Information Entropy


Time Limit: 2 Seconds      Memory Limit: 131072 KB      Special Judge


Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream.
Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when
it occurs.

Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication".
We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2,
..., xn}
 and probability mass functionP(X) as:

H(X)=E(−ln(P(x)))

Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

H(X)=−∑i=1nP(xi)log b(P(xi))

Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e,
and dit (or digit) for b = 10 respectively.

In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

0log b(0)=limp→0+plog b(p)

Your task is to calculate the entropy of a finite sample with N values.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

In the next line, there are N non-negative integers P1P2, .., PNPi means the probability
of the i-th value in percentage and the sum of Pi will be 100.

Output

For each test case, output the entropy in the corresponding unit.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10

Sample Output

1.500000000000
1.480810832465
1.000000000000

    牡丹江赛区的第二道签到题。难度不大,基本A题通过后全部人I题也開始非常快通过,题目看起来非常难理解,可是一旦看懂事实上发现这事实上就是一道英文题。题目就是给一堆序列。然后给n个数a1,a2...an。然后对每一个数字求出(ai/sum)*log(ai/sum)的总和,当bit是,log以2为底,当nat时,log以e为底,当dit时。log以10为底,之后计算证明当ai=0时,对结果无影响,所以能够直接忽略,然后直接带入计算就可以AC此题~~~详细AC代码例如以下:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int a[105];
int main()
{
// freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--)
{
int n;
string s;
scanf("%d",&n);
cin>>s;
int sum=0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
double res=0;
if(s=="bit")
{
for(int i=0;i<n;i++)
{
if(a[i]==0)
continue;
double p1=-log2(a[i]*1.0/sum)*a[i]/sum;
res+=p1;
}
}
else if(s=="nat")
{
for(int i=0;i<n;i++)
{
if(a[i]==0)
continue;
double p1=-log(a[i]*1.0/sum)*a[i]/sum;
res+=p1;
}
}
else
{
for(int i=0;i<n;i++)
{
if(a[i]==0)
continue;
double p1=-log10(a[i]*1.0/sum)*a[i]/sum;
res+=p1;
}
}
printf("%.12f\n",res);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

ZOJ3827 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江I称号 Information Entropy 水的问题的更多相关文章

  1. ZOJ3819 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江司A称号 Average Score 注册标题

    Average Score Time Limit: 2 Seconds      Memory Limit: 131072 KB Bob is a freshman in Marjar Univers ...

  2. 2014年亚洲区域赛北京赛区现场赛A,D,H,I,K题解(hdu5112,5115,5119,5220,5122)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 下午在HDU上打了一下今年北京区域赛的重现,过了5题,看来单挑只能拿拿铜牌,呜呜. ...

  3. [hdu5136]Yue Fei's Battle 2014 亚洲区域赛广州赛区J题(dp)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 现场赛的时候由于有个地方有点小问题,没有成功AC,导致与金牌失之交臂. 由于今天下 ...

  4. 第 45 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(济南)-L Bit Sequence

    题意 给你两个数l,m,大小为m的数组a,求[0,l]之间满足以下条件的数x的个数: 对于任何i输入[0,m-1],f(x+i)%2=a[i]:f(k):代表k在二进制下1的个数 m的范围<=1 ...

  5. 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)

    队名:Unlimited Code Works(无尽编码)  队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...

  6. HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011亚洲北京赛区网络赛)

    HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011 亚洲北京赛区网络赛题目) Eliminate Witches! Time Limit: 2000/1000 ...

  7. 2019~2020icpc亚洲区域赛徐州站H. Yuuki and a problem

    2019~2020icpc亚洲区域赛徐州站H. Yuuki and a problem 题意: 给定一个长度为\(n\)的序列,有两种操作: 1:单点修改. 2:查询区间\([L,R]\)范围内所有子 ...

  8. ICPC 2018 亚洲横滨赛 C Emergency Evacuation(暴力,贪心)

    ICPC 2018 亚洲横滨赛 C Emergency Evacuation 题目大意 你一个车厢和一些人,这些人都坐在座位上,求这些人全部出去的时间最小值 Solution 题目咋说就咋做 直接模拟 ...

  9. 2014ACM/ICPC亚洲区域赛牡丹江站汇总

    球队内线我也总水平,这所学校得到了前所未有的8地方,因为只有两个少年队.因此,我们13并且可以被分配到的地方,因为13和非常大的数目.据领队谁oj在之上a谁去让更多的冠军.我和tyh,sxk,doub ...

随机推荐

  1. Thrift反序列化导致OOM(转)

    概述 最近线上的日志处理服务偶尔会出现Out Of Memory的问题,从Exception的call stack中顺藤摸瓜,最终定位到是thrift反序列化的问题. 发现问题 先交代一下问题现场: ...

  2. fs学习笔记之输出格式

    接触fs那么久,有必要再记录一下. 上一篇介绍了fs拓扑描写叙述文件dot的格式,今天要介绍fs输出文件的格式. 举个样例,下面是d节点输出文件的一行记录,也就是一条流经过d的记录. textexpo ...

  3. COCO-Android开发框架公布

    一. COCO-Android说明 二. COCO-Android结构图 三. COCOBuild 四. COCOFrame 一.COCO-Android说明 1. COCO-Android是支撑An ...

  4. RabbitMQ消息队列应用

    RabbitMQ消息队列应用 消息通信组件Net分布式系统的核心中间件之一,应用与系统高并发,各个组件之间解耦的依赖的场景.本框架采用消息队列中间件主要应用于两方面:一是解决部分高并发的业务处理:二是 ...

  5. A Game of Thrones(6) - Catelyn

    Of all the rooms in Winterfell’s Great Keep, Catelyn’s bedchambers(['bedtʃeɪmbə]卧室,寝室) were the hott ...

  6. 添加PDF文件对照度的粗浅原理,及方法

      上边这张照片不是异形,而是著名的鹦鹉螺.下边这张照片,是送给研究生同学的毕业纪念,向龙同学帮我激光雕刻的. 近期的照片在[http://www.douban.com/photos/album/13 ...

  7. 使用Visual Studio 寻找App性能瓶颈

    使用Visual Studio 寻找App性能瓶颈 最后更新日期:2014-05-05 阅读前提: 环境:Windows 8.1 64bit英文版,Visual Studio 2013 专业版Upda ...

  8. 50个最受网友欢迎的HTML5资源下载列表

    完整附件下载地址:http://down.51cto.com/data/413867 附件预览: HTML 5游戏源码精选(共含9个游戏源码) http://down.51cto.com/zt/227 ...

  9. Spring Data Redis—Pub/Sub(附Web项目源码) (转)

    一.发布和订阅机制 当一个客户端通过 PUBLISH 命令向订阅者发送信息的时候,我们称这个客户端为发布者(publisher). 而当一个客户端使用 SUBSCRIBE 或者 PSUBSCRIBE ...

  10. 【Android工具类】Activity管理工具类AppManager

    转载请注明出处:http://blog.csdn.net/zhaokaiqiang1992 import java.util.Stack; import android.app.Activity; i ...