AtCoder AGC001E BBQ Hard (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e
题解:
求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B_i+B_j\choose A_i+A_j}\)
虽然\(n\)很大,但是\(A_i,B_i\le 2000\), 所以我们可以考虑一个权值平方的做法
观察到那个式子就等于从\((-A_j,-B_j)\)走到\((A_i,B_i)\)的NE Lattice Path条数,那么就相当于从\(S\)连边向每个\((-A_i,B_i)\), 从每个\((A_i,B_i)\)连边向\(T\), 然后求\(S\)到\(T\)的路径条数,减去\(i\)和\(j\)相等的情况再除以\(2\)就是答案。
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define llong long long
using namespace std;
const int N = 2e5;
const int C = 2000;
const int P = 1e9+7;
llong a[N+3],b[N+3];
llong fact[N+3],finv[N+3];
llong dp[C+C+7][C+C+7];
int n;
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {ret = ret*cur%P; y-=(1ll<<i);}
cur = cur*cur%P;
}
return ret;
}
llong comb(llong x,llong y) {return x<0 || y<0 || x<y ? 0ll : fact[x]*finv[x-y]%P*finv[y]%P;}
int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d",&n);
for(int i=1; i<=n; i++) scanf("%d%d",&a[i],&b[i]);
for(int i=1; i<=n; i++) dp[C-a[i]][C-b[i]] += 1ll;
for(int i=1; i<=C+C; i++) dp[0][i] += dp[0][i-1];
for(int i=1; i<=C+C; i++) dp[i][0] += dp[i-1][0];
for(int i=1; i<=C+C; i++)
{
for(int j=1; j<=C+C; j++)
{
dp[i][j] = dp[i][j]+dp[i-1][j]+dp[i][j-1];
dp[i][j] %= P;
}
}
llong ans = 0ll;
for(int i=1; i<=n; i++) ans = (ans+dp[C+a[i]][C+b[i]])%P;
for(int i=1; i<=n; i++) ans = (ans-comb(a[i]+a[i]+b[i]+b[i],a[i]+a[i])+P)%P;
ans = ans*(P+1)/2%P;
printf("%lld\n",ans);
return 0;
}
AtCoder AGC001E BBQ Hard (DP、组合计数)的更多相关文章
- 3.29省选模拟赛 除法与取模 dp+组合计数
LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...
- ZOJ-3380 Patchouli’s Spell Cards DP, 组合计数
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3380 题意:有m种不同的元素,每种元素都有n种不同的相位,现在假 ...
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- bzoj 2425 [HAOI2010]计数 dp+组合计数
[HAOI2010]计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 451 Solved: 289[Submit][Status][Discus ...
- 牛客国庆集训派对Day3 B Tree(树形dp + 组合计数)
传送门:https://www.nowcoder.com/acm/contest/203/B 思路及参考:https://blog.csdn.net/u013534123/article/detail ...
- BZOJ 1801: [Ahoi2009]chess 中国象棋 [DP 组合计数]
http://www.lydsy.com/JudgeOnline/problem.php?id=1801 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放 ...
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- [CF1060F]Shrinking Tree[树dp+组合计数]
题意 你有一棵 \(n\) 个点的树,每次会随机选择树上的一条边,将两个端点 \(u,v\) 合并,新编号随机为 \(u,v\).问最后保留的编号分别为 \(1\) 到 \(n\) 的概率. \(n\ ...
- BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]
2302: [HAOI2011]Problem c Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 648 Solved: 355[Submit][S ...
随机推荐
- MyBatis 示例-插件
简介 利用 MyBatis Plugin 插件技术实现分页功能. 分页插件实现思路如下: 业务代码在 ThreadLocal 中保存分页信息: MyBatis Interceptor 拦截查询请求,获 ...
- hdu 2189还是dp..
题目的意思比较简单,类似计数dp. 一开始我想让dp[i]+=dp[i-prime] 每次遍历比i小的所有素数,然后发现有重叠的 比如 2+3 3+2 就导致错误.看了其他人的填充方式,发现定下pri ...
- cas sso 整合记录
首先说明下,我使用的cas-server版本是4.2.1 整合过程中遇到的问题及解决方式如下 1.因为使用https的话证书是个麻烦事,所以启用http 修改cas-server-webapp下的ca ...
- 关于一些JS的运算符
首先呢,什么是JavaScript:JavaScript是一种脚本语言,也是一种解释型语言,更是一种由数据值决定变量类型的弱类型语言 JavaScript主要由三部分组成 ECMAScript 这个 ...
- GSM AT指令 SIM900A TC35
http://download.csdn.net/download/zhangxuechao_/9911264 短信 TEXT格式 设置短消息中心号码: AT+CSCA="+86130101 ...
- 非常规的command not found
在linux环境下会遇到各种command not found的情况,大部分是可以直接安装同名的包可以解决,但有一些不是,这里做一下汇总,总结各种命令或者工具的安装情况: 非同名安装: 包名 Debi ...
- vue项目,子页面刷新404问题
翻车事故分析: 因需对项目整体优化,调整过程,采用了路由的history模式,本地项目运行,刷新子页面都是OK的. 部署到测试服务器,正常跳转都ok,但刷新子页面就会出现404,请求变成了get,没有 ...
- 《数字图像处理(MATLAB)》冈萨雷斯
<数字图像处理(MATLAB)>冈萨雷斯 未完结! 参考:数字图像处理——https://blog.csdn.net/dujing2019/article/category/8820151 ...
- RobHess的SIFT代码解析步骤四
平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码 2.书:王永明 ...
- MySQL安装步骤及环境变量配置
MySQL安装 MySQL下载地址:http://dev.mysql.com/downloads/installer/1:首先进入的是安装引导界面2:然后进入的是类型选择界面,这里有3个类型:Typi ...