浅谈sqoop
1.sqoop的概述
a.sqoop 是一款工具,是appche 旗下的一款工具,主要是负责 hadoop与RDBMS之间的数据迁移,即从hadoop 文件系统 导出数据到RDBMS,从RDBMS导入数据到hadoop hdfs,hive,hbase等数据存储系统。
b.其实就是将 sqoop命令转换成MR程序来完成数据的迁移。
c.本质就是执行和计算,依赖于hdfs存储数据,把sql转换成程序。

2.sqoop的工作机制
将导入或导出命令翻译成 MapReduce 程序来实现 在翻译出的 MapReduce 中主要是对 InputFormat 和 OutputFormat 进行定制
3.sqoop安装
a.前提概述
以后sqoop 会跟以下系统或者组件打交道:
HDFS,MapReduce,YARN,ZooKeeper,Hive,HBASE,Mysql
记住:sqoop就是一个工具,只需要在一个节点上进行安装即可。
b.软件下载
下载地址:http://mirrors.hust.edu.cn/apache/
版本选择:选择sqoop-1.4.6.bin_hadoop-2.0.4-alpha.tar.gz
c.安装步骤
1.拿到包之后,通过xftp上传到 mater /usr/local/app目录下
2.解压缩 tar -zxvf sqoop-1.4.6.bin_hadoop-2.0.4-alpha.tar.gz
3.将解压缩的文件移动到/usr/local/app/sqoop 目录下
sudo mv sqoop-1.4.6.bin_hadoop-2.0.4-alpha /usr/local/app/sqoop
4.进入到conf文件夹
cd /usr/local/app/sqoop/conf
5.将sqoop-env-template.sh复制为 sqoop-env.sh
6.修改sqoop-env.sh
vim sqoop-env,sh
加入以下代码,路径注意修改
export HADOOP_COMMON_HOME=/usr/local/app/hadoop
#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/usr/local/app/hadoop
#set the path to where bin/hbase is available
#export HBASE_HOME=/home/hadoop/apps/hbase-1.2.6
#Set the path to where bin/hive is available
export HIVE_HOME=/usr/local/app/hive
#Set the path for where zookeper config dir is
#export ZOOCFGDIR=/home/hadoop/apps/zookeeper-3.4.10/conf
7.加入mysql驱动包到 /usr/local/app/sqoop/lib目录下
cp mysql-connector-java-5.1.40-bin.jar /usr/local/app/sqoop/lib/
8.环境变量配置
sudo gedit ~/.bashrc
添加以下变量:
#Sqoop variable
export SQOOP_HOME=/usr/local/app/sqoop
export PATH=$PATH:$SQOOP_HOME/bin
#sqoop variable
保存退出,然后使其生效
source ~/.bashrc
9.验证安装是否成功
sqoop-version

4.sqoop的基本命令
sqoop help

查看sqoop的具体的一条命令使用,比如:
sqoop help import
1.列出MySql数据有哪些数据库
sqoop list-databases --connect jdbc:mysql://master:3306/ --username root --password 123456

2.列出Mysql中的某个数据库有哪些数据表

3.创建一张跟mysql中help_keyword表一样的hive表hk
执行以下脚本,报错

百度给到的解决办法:
Sqoop导入mysql表中的数据到hive,出现如下错误:
ERROR hive.HiveConfig: Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.
命令如下:
./sqoop import --connect jdbc:mysql://slave2:3306/mysql --username root --password aaa --table people --hive-import --hive-overwrite --hive-table people --fields-terminated-by '\t';
解决方法:
往/etc/profile最后加入 export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*
然后刷新配置,source /etc/profile
5.sqoop的数据导入导出
1.从RDBMS导入到HDFS
sqoop import \
--connect jdbc:mysql://master:3306/mysql \
--username root \
--password 123456 \
--table help_keyword \
-m 1
-m 1 表示使用1个mapreduce
sqoop是apache开源项目,主要用于关系型数据库数据和hdfs数据的相互同步.
主要记录下-m和--split-by参数的使用:
1. 这俩参数一般是放在一起使用
2.-m:表明需要使用几个map任务并发执行
3.--split-by :拆分数据的字段. -m设置为4,数据有100条,sqoop首先会获取拆分字段的最大值,最小值,步长为100/4=25;
那么第一个map执行拆分字段值为(1,25)之间的数据
第二个map执行拆分字段值为(26,50)之间的数据
第三个map执行拆分字段值为(51,75)之间的数据
第四个map执行拆分字段值为(76,100)之间的数据
注意事项:
1.拆分字段默认为主键
2.拆分字段的数据类型最好为int,如果不是则将-m设置为1,split-by不设置
3.拆分字段的值最好分布均匀,否则会造成数据倾斜的问题
2.指定行分隔符和列分隔符,指定hive-import
sqoop import \
--connect jdbc:mysql://master:3306/mysql \
--username root \
--password 123456 \
--table help_keyword \
--target-dir /user/hadoop/my_help_keyword1 \
--fields-terminated-by '\t' \
-m 2



3.带where条件
sqoop import \
--connect jdbc:mysql://master:3306/mysql \
--username root \
--password 123456 \
--where "name='STRING' " \
--table help_keyword \
--target-dir /user/hadoop1/my_help_keyword1 \
-m 1
4.查询指定列
5.指定自定义查询sql
sqoop import \
--connect jdbc:mysql://master:3306/ \
--username root \
--password 123456 \
--target-dir /user/hadoop3/myimport33_1 \
--query 'select help_keyword_id,name from mysql.help_keyword where $CONDITIONS and name = "STRING"' \
--split-by help_keyword_id \
--fields-terminated-by '\t' \
-m 4
说明:在以上需要按照自定义SQL语句导出数据到HDFS的情况下:
1、引号问题,要么外层使用单引号,内层使用双引号,$CONDITIONS的$符号不用转义, 要么外层使用双引号,那么内层使用单引号,然后$CONDITIONS的$符号需要转义
2、自定义的SQL语句中必须带有WHERE \$CONDITIONS
6.把Mysql数据库中的表数据导入到hive中
sqoop导入关系型数据到hive的过程,是先导入到hdf中,然后再load进入hive中
6.1.普通导入:数据存储在默认的default hive库中,表名就是对应的mysql的表名:
sqoop import \
--connect jdbc:mysql://master:3306/mysql \
--username root \
--password 123456 \
--table help_keyword \
--hive-import \
-m 1
删除HDFS文件:
hadoop fs -rm /user/root/help_keyword/*
删除HDFS目录:
hadoop fs -rm -R /user/root/help_keyword
6.2.指定行分隔符和列分隔符,指定hive-import,指定覆盖导入,指定自动创建hive表,指定表名,指定删除中间结果数据目录
sqoop import \
--connect jdbc:mysql://master:3306/mysql \
--username root \
--password 123456 \
--table help_keyword \
--fields-terminated-by "\t" \
--lines-terminated-by "\n" \
--hive-import \
--hive-overwrite \
--create-hive-table \
--delete-target-dir \
--hive-database mydb_test \
--hive-table new_help_keyword
执行失败,报以下错误

百度之后,解决方案如下:


增量导入:
sqoop import \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--target-dir /user/hadoop/myimport_add \
--incremental append \
--check-column help_keyword_id \
--last-value 500 \
-m 1
浅谈sqoop的更多相关文章
- 浅谈 Fragment 生命周期
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...
- 浅谈 LayoutInflater
浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...
- 浅谈Java的throw与throws
转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...
- 浅谈SQL注入风险 - 一个Login拿下Server
前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...
- 浅谈WebService的版本兼容性设计
在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...
- 浅谈angular2+ionic2
浅谈angular2+ionic2 前言: 不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别. 1. 项目所用:angular2+ionic2 ...
- iOS开发之浅谈MVVM的架构设计与团队协作
今天写这篇博客是想达到抛砖引玉的作用,想与大家交流一下思想,相互学习,博文中有不足之处还望大家批评指正.本篇博客的内容沿袭以往博客的风格,也是以干货为主,偶尔扯扯咸蛋(哈哈~不好好工作又开始发表博客啦 ...
- Linux特殊符号浅谈
Linux特殊字符浅谈 我们经常跟键盘上面那些特殊符号比如(?.!.~...)打交道,其实在Linux有其独特的含义,大致可以分为三类:Linux特殊符号.通配符.正则表达式. Linux特殊符号又可 ...
- 浅谈Angular的 $q, defer, promise
浅谈Angular的 $q, defer, promise 时间 2016-01-13 00:28:00 博客园-原创精华区 原文 http://www.cnblogs.com/big-snow/ ...
随机推荐
- ABAP DEMO ole示例程序
*&---------------------------------------------------------------------* *& Report YCX_021 * ...
- Spring Cloud Eureka 服务发现 4.2
在微服务架构中,服务发现可以说是最为核心和基础的模块,该模块主要用于实现各个微服务实例的自动化注册与发现.在Spring Cloud的子项目中,Spring Cloud Netflix提供了Eur ...
- [ kvm ] 学习笔记 1:Linux 操作系统及虚拟化
1. 前言 一台计算机是由一堆硬件设备组合而成,在硬件之上是操作系统,操作系统与计算机硬件密不可分,操作系统用来管理所有的硬件资源提供服务,各个硬件设备是通过 总线 进行连接起来的: 在操作系统之上, ...
- Linux系统swappiness参数在内存与交换分区之间优化作用
http://blog.sina.com.cn/s/blog_13cc013b50102wskd.html swappiness的值的大小对如何使用swap分区是有着很大的联系的.swappiness ...
- Python3之调试
程序能一次写完并正常运行的概率很小,基本不超过1%.总会有各种各样的bug需要修正.有的bug很简单,看看错误信息就知道,有的bug很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误 ...
- robot:List变量的使用注意点
创建list类型变量,两种方式,建议使用Create List关键字 使用该列表变量时需要变为${}方式,切记切记!
- stochastic noise and deterministic noise
在机器学习中,导致overfitting的原因之一是noise,这个noise可以分为两种,即stochastic noise,随机噪声来自数据产生过程,比如测量误差等,和deterministic ...
- 使用mysql连接django时,需要的步骤以及错误解决办法
django默认使用的sqlite3,更改为SQL时需要按照如下操作进行 1.在settings.py中的78行进行更改 DATABASES = { 'default': { 'ENGINE': 'd ...
- Appium移动自动化测试-----(八)定位控件
appium 通过 uiautomatorviewer.bat 工具来查看控件的属性.该工具位于 Android SDK 的 /tools/bin/ 目录下. id 定位 通过uiautomatorv ...
- Django学习过程中遇到的问题
一.Django数据同步过程中遇到的问题: 1.raise ImproperlyConfigured('mysqlclient 1.3.13 or newer is required; you hav ...