代码如下:

%matplotlib inline
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
from torchvision import models class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
#此处的16*5*5为conv2经过pooling之后的尺寸,即为fc1的输入尺寸,在这里写死了,因此后面的输入图片大小不能任意调整
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net) params = list(net.parameters())
print (len(params))
print(params[0].size())
print(params[1].size())
print(params[2].size())
print(params[3].size())
print(params[4].size())
print(params[5].size())
print(params[6].size())
print(params[7].size())
print(params[8].size())
print(params[9].size()) input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vgg = net.to(device)
summary(vgg, (1, 32, 32))

上述代码完成了以下功能:

1、建立一个简单的网络,并给各个网络层的参数size进行赋值;

2、查看各个网络层参数量;

3、给网路一个随机的输入,查看网络输出;

4、查看网络每一层的额输出blob的大小;

这里需要注意的是,在进行第一个全连接层的定义时,self.fc1 = nn.Linear(16*5*5, 120)

第一个参数是根据网络结构计算出来的到达该层的feature map的尺寸,因此后面在给定网络输入的时候,不能任意调整网络的输入尺寸,该尺寸经过conv1+pooling+conv2+pooling之后的尺寸必须要为5*5才可以;

pytorch入门1——简单的网络搭建的更多相关文章

  1. 【小白学PyTorch】1 搭建一个超简单的网络

    文章目录: 目录 1 任务 2 实现思路 3 实现过程 3.1 引入必要库 3.2 创建训练集 3.3 搭建网络 3.4 设置优化器 3.5 训练网络 3.6 测试 1 任务 首先说下我们要搭建的网络 ...

  2. 超简单!pytorch入门教程(五):训练和测试CNN

    我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一 ...

  3. 从零搭建Pytorch模型教程(三)搭建Transformer网络

    ​ 前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. ...

  4. 简单网络搭建与测试 mininet

    简介 本实验是基于pox搭建简单的网络并测试网络的连通性,利用mininet代码创建一个交换机四个主机的拓扑,测试各主机之间的连通性以及h1.h4之间的带宽. 代码 实验代码如下所示,SingleSw ...

  5. 用http.get()简单实现网络验证防止客户不给尾款_电脑计算机编程入门教程自学

    首发于:用http.get()简单实现网络验证防止客户不给尾款_电脑计算机编程入门教程自学 http://jianma123.com/viewthread.aardio?threadid=428 给软 ...

  6. Redis入门很简单之一【简介与环境搭建】

    Redis入门很简单之一[简介与环境搭建] 博客分类: NoSQL/Redis/MongoDB redisnosqlmemcached缓存中间件  [Redis简介] <一>. NoSQL ...

  7. Pytorch入门中 —— 搭建网络模型

    本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中 ...

  8. Pytorch入门随手记

    Pytorch入门随手记 什么是Pytorch? Pytorch是Torch到Python上的移植(Torch原本是用Lua语言编写的) 是一个动态的过程,数据和图是一起建立的. tensor.dot ...

  9. Pytorch入门下 —— 其他

    本节内容参照小土堆的pytorch入门视频教程. 现有模型使用和修改 pytorch框架提供了很多现有模型,其中torchvision.models包中有很多关于视觉(图像)领域的模型,如下图: 下面 ...

随机推荐

  1. Java开发中使用sort排序

    Java开发中使用sort排序 BaiduSpring https://baijiahao.baidu.com/s?id=1625440912158830354&wfr=spider& ...

  2. angular自定义组件

    https://cli.angular.io/ 打开终端创建header组件: ng g component components/header import { Component, OnInit ...

  3. [Java复习] 分布式事务 Part 2

    分布式事务了解吗?如果解决分布式事务问题的? 面试官心里: 只要聊到你做了分布式系统,必问分布式事务,起码得知道有哪些方案,一般怎么来做,每个方案的优缺点是什么. 为什么要有分布式事务? 分布式事务实 ...

  4. 【转载】 迁移学习(Transfer learning),多任务学习(Multitask learning)和端到端学习(End-to-end deep learning)

    --------------------- 作者:bestrivern 来源:CSDN 原文:https://blog.csdn.net/bestrivern/article/details/8700 ...

  5. GPS nmealib学习 问题

    When building on Ubuntu 12.x the build fails with the following error… gcc  samples/generate/main.o ...

  6. 算法习题---4-2正方形(UVa201)

    一:题目 判断一个点阵中含有几个正方形(数正方形) 如图例中:有2个边长为1的正方形,1个边长为2的正方形 (一)题目详解 (二)样例输入 4 表示每行每列各有4个顶点 16 表示整个点阵中共有16条 ...

  7. Django文档

    https://docs.djangoproject.com/zh-hans/2.1/

  8. Mysql开启审计功能

    第一种经验证,有效. 第一种用macfee的mysql审计插件. 下载地址:https://bintray.com/mcafee/mysql-audit-plugin/release/1.1.4-72 ...

  9. MySQL主从复制与读写分离实践

    MySQL主从复制(Master-Slave)与读写分离(MySQL-Proxy)实践  目录: 介绍 MySQL的安装与配置 MySQL主从复制 MySQL读写分离 编译安装lua 安装配置MySQ ...

  10. storm是如何保证at least once语义的?

    storm中的一些原语: 要说明上面的问题,得先了解storm中的一些原语,比如: tuple和messagetuple:在storm中,消息是通过tuple来抽象表示的,每个tuple知道它从哪里来 ...