title: 【概率论】5-5:负二项分布(The Negative Binomial Distribution)

categories:

- Mathematic

- Probability

keywords:

- The Negative Binomial Distribution

- The Geometric Distribution

toc: true

date: 2018-03-29 08:57:12



Abstract: 本文介绍负二项分布,几何分布的基础知识

Keywords: The Negative Binomial Distribution,The Geometric Distribution

开篇废话

到目前为止,所有的分部都是从Bernoulli 分布衍生出来的:

  1. 二项分布,nnn 次Bernoulli试验的结果中,每次试验的分布不变,结果为1的次数 XXX 的分布
  2. 超几何分布,nnn 次Bernoulli试验,每次试验分布发生改变,结果为1的次数 XXX 的分布,当试验分布变化不大的时候和二项分布结果相同
  3. 泊松分布,用来在某种特殊情况下(nnn 比较大, ppp 比较小,而 npnpnp 又不是很大的情况下)近似二项分布,当n趋近于无穷的时候等同于二项分布。

今天我们还是从二项分布出发,研究这样一个事实,对于Bernoulli过程,我们设定,当某个结果出现固定次数的时候,整个过程的数量,比如我们生产某个零件,假设每个零件的合格与否都是相互独立的,且分布相同,那么当我们生产出了五个不合格零件时,一共生产了多少合格的零件,这个数量就是一个负二项分布。

为什么叫负二项分布而不是正二项分布?

有两种说法,第一我们上面说到的例子,多半是失败到了固定次数时 XXX 的分布,另一种是站在分布的系数上来观察的,在下面我们可以看得到。

Definition and Interpretation

废话中给出的生产零件的例子就是引出定义的关键。我们来先看一个定理,描述上面过程的定理:

Theorem Sampling until a Fixed Number of Success.Suppose that an infinite sequence of Bernoulli trails with probability of success ppp are available.The number XXX of failures that occur before the rrrth success has the following p.d.f.

f(x∣r,p)={(r+x−1x)pr(1−p)xfor x=0,1,2,…0otherwise
f(x|r,p)=
\begin{cases}
\begin{pmatrix}
r+x-1\\
x
\end{pmatrix}p^r(1-p)^x&\text{for }x=0,1,2,\dots\\
0&\text{otherwise}
\end{cases}
f(x∣r,p)=⎩⎨⎧​(r+x−1x​)pr(1−p)x0​for x=0,1,2,…otherwise​

证明如下

首先我们必须分析一下这个过程,当成功的次数达到目标后停止试验,也就是说最后一次必然是成功的,不然试验不会结束,所以我们需要的是在已经进行了的 x+r−1x+r-1x+r−1 次实验中完成 r−1r-1r−1 次成功,xxx 次失败,那么从计数原理角度,概率为:

Pr(An)=(n−1r−1)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1)pr(1−p)(n−r)p
\begin{aligned}
Pr(A_n)&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r-1}(1-p)^{(n-1)-(r-1)}p\\
&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r}(1-p)^{(n-r)}p
\end{aligned}
Pr(An​)​=(n−1r−1​)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1​)pr(1−p)(n−r)p​

本文节选自地址:https://www.face2ai.com/Math-Probability-5-5-The-Negative-Binomial-Distribution转载请标明出处

【概率论】5-5:负二项分布(The Negative Binomial Distribution)的更多相关文章

  1. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  2. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  3. negative binomial(Pascal) distribution —— 负二项式分布(帕斯卡分布)

    1. 定义 假设一串独立的伯努利实验(0-1,成功失败,伯努利实验),每次实验(trial)成功和失败的概率分别是 p 和 1−p.实验将会一直重复下去,直到实验失败了 r 次.定义全部实验中成功的次 ...

  4. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  5. Distribution

    Random Variable \(\underline{cdf:}\)cumulative distribution function \(F(x)=P(X \leq x)\) \(\underli ...

  6. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

  7. R代码展示各种统计学分布 | 生物信息学举例

    二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distr ...

  8. 常见的机器学习&数据挖掘知识点

    原文:http://blog.csdn.net/heyongluoyao8/article/details/47840255 常见的机器学习&数据挖掘知识点 转载请说明出处 Basis(基础) ...

  9. R语言函数总结(转)

    R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达 ...

随机推荐

  1. netty--buffer分配策略

    AdaptiveRecvByteBufAllocator 动态分配buffer大小的类. 如果前一次读取完全填满了分配的缓冲区,它将逐渐增加预期的可读字节数.(增加的方式:初始化类的时候,会预先设置好 ...

  2. C++11 特性

    之前工作中开发/维护的模块大多都是 "远古代码",只能编译 C++98,很多 C++11 的特性都忘得差不多了,再回顾一下 右值引用&转移语义: 消除两个对象交互时不必要的 ...

  3. Linux Nginx的权限——访问本地目录报错403

    在安装好FastDFS并成功上传图片文件后,根据FastDFS返回的文件地址无法通过HTTP(即浏览器)访问到,报错404或者403. 不管是Error 404还是Error 403,基本都是Ngin ...

  4. SQL链接服务器查询-OPENQUERY的使用

    OpenQuery: 用途:与其他Server交互的技术,通过它能够直接访问其他数据库资源.可以跨平台连接,包括Oracle   --创建链接服务器 exec sp_addlinkedserver ' ...

  5. css 基础入门

    CSS 概述 为了让网页元素的样式更加丰富,也为了让网页的内容和样式能拆分开,css 由此而生,css 是 Cascading Style Sheets 的字母缩写,意思是层叠样式表,有了 css,h ...

  6. Android 在同一台设备上安装多个同一项目的apk

    如果设备上已经安装了一个apk,再次安装这个apk就会提示覆盖前面的应用 解决办法: 方法一:手动改包名 不好改,改了几次都不成功(可能是代码在svn管理的原因,改完后文件夹里的代码就没了),确实不实 ...

  7. reinterpret

    reinterpret意为“重新解释” reinterpret_cast是C++中与C风格类型转换最接近的类型转换运算符.它让程序员能够将一种对象类型转换为另一种,不管它们是否相关. reinterp ...

  8. rabbitmq rabbitmqadmin基本操作

    一.下载管理命令 http://192.168.56.12:15672/cli/rabbitmqadmin 二.上传到mq对应服务器并添加权限 chmod +x /usr/locat/sbin/rab ...

  9. Deep Module(深模块)

    Deep Module(深模块) 目录 1,模块化设计 2,接口里有什么 3,抽象 4,深模块 5,浅模块 6,Classitis 7,例子 8,结论 正文 类是不是越小越好?最近在读John Ous ...

  10. 6. kafka序列化和反序列化

    https://blog.csdn.net/weixin_33690963/article/details/91698279 kafka序列化: 生产者在将消息传入kafka之前需要将其序列化成byt ...