title: 【概率论】5-5:负二项分布(The Negative Binomial Distribution)

categories:

- Mathematic

- Probability

keywords:

- The Negative Binomial Distribution

- The Geometric Distribution

toc: true

date: 2018-03-29 08:57:12



Abstract: 本文介绍负二项分布,几何分布的基础知识

Keywords: The Negative Binomial Distribution,The Geometric Distribution

开篇废话

到目前为止,所有的分部都是从Bernoulli 分布衍生出来的:

  1. 二项分布,nnn 次Bernoulli试验的结果中,每次试验的分布不变,结果为1的次数 XXX 的分布
  2. 超几何分布,nnn 次Bernoulli试验,每次试验分布发生改变,结果为1的次数 XXX 的分布,当试验分布变化不大的时候和二项分布结果相同
  3. 泊松分布,用来在某种特殊情况下(nnn 比较大, ppp 比较小,而 npnpnp 又不是很大的情况下)近似二项分布,当n趋近于无穷的时候等同于二项分布。

今天我们还是从二项分布出发,研究这样一个事实,对于Bernoulli过程,我们设定,当某个结果出现固定次数的时候,整个过程的数量,比如我们生产某个零件,假设每个零件的合格与否都是相互独立的,且分布相同,那么当我们生产出了五个不合格零件时,一共生产了多少合格的零件,这个数量就是一个负二项分布。

为什么叫负二项分布而不是正二项分布?

有两种说法,第一我们上面说到的例子,多半是失败到了固定次数时 XXX 的分布,另一种是站在分布的系数上来观察的,在下面我们可以看得到。

Definition and Interpretation

废话中给出的生产零件的例子就是引出定义的关键。我们来先看一个定理,描述上面过程的定理:

Theorem Sampling until a Fixed Number of Success.Suppose that an infinite sequence of Bernoulli trails with probability of success ppp are available.The number XXX of failures that occur before the rrrth success has the following p.d.f.

f(x∣r,p)={(r+x−1x)pr(1−p)xfor x=0,1,2,…0otherwise
f(x|r,p)=
\begin{cases}
\begin{pmatrix}
r+x-1\\
x
\end{pmatrix}p^r(1-p)^x&\text{for }x=0,1,2,\dots\\
0&\text{otherwise}
\end{cases}
f(x∣r,p)=⎩⎨⎧​(r+x−1x​)pr(1−p)x0​for x=0,1,2,…otherwise​

证明如下

首先我们必须分析一下这个过程,当成功的次数达到目标后停止试验,也就是说最后一次必然是成功的,不然试验不会结束,所以我们需要的是在已经进行了的 x+r−1x+r-1x+r−1 次实验中完成 r−1r-1r−1 次成功,xxx 次失败,那么从计数原理角度,概率为:

Pr(An)=(n−1r−1)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1)pr(1−p)(n−r)p
\begin{aligned}
Pr(A_n)&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r-1}(1-p)^{(n-1)-(r-1)}p\\
&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r}(1-p)^{(n-r)}p
\end{aligned}
Pr(An​)​=(n−1r−1​)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1​)pr(1−p)(n−r)p​

本文节选自地址:https://www.face2ai.com/Math-Probability-5-5-The-Negative-Binomial-Distribution转载请标明出处

【概率论】5-5:负二项分布(The Negative Binomial Distribution)的更多相关文章

  1. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  2. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  3. negative binomial(Pascal) distribution —— 负二项式分布(帕斯卡分布)

    1. 定义 假设一串独立的伯努利实验(0-1,成功失败,伯努利实验),每次实验(trial)成功和失败的概率分别是 p 和 1−p.实验将会一直重复下去,直到实验失败了 r 次.定义全部实验中成功的次 ...

  4. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  5. Distribution

    Random Variable \(\underline{cdf:}\)cumulative distribution function \(F(x)=P(X \leq x)\) \(\underli ...

  6. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

  7. R代码展示各种统计学分布 | 生物信息学举例

    二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distr ...

  8. 常见的机器学习&数据挖掘知识点

    原文:http://blog.csdn.net/heyongluoyao8/article/details/47840255 常见的机器学习&数据挖掘知识点 转载请说明出处 Basis(基础) ...

  9. R语言函数总结(转)

    R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达 ...

随机推荐

  1. Shiro授权及注解式开发

    目的: shiro授权 shiro注解式开发 Shiro授权 首先设计shiro权限表: 从图中我们也清晰的看出五张表之间的关系 ShiroUserMapper Set<String> g ...

  2. [UOJ#404][CTSC2018]组合数问题(79分,提交答案题,模拟退火+匈牙利+DP)

    1.4.5.6.10都是op=1的点,除4外直接通过模拟退火调参可以全部通过. #include<cmath> #include<ctime> #include<cstd ...

  3. Feign 客户端调用错误

    1.@RequestBody 必须要写在实现接口中 2.Feign 客户端调用的时候如果有参数的话,默认是发送post请求 3.服务接口中的请求参数必须要加上@RequestParam("r ...

  4. 轻松玩转Ant Design Pro一

    ant design pro来源于ant design,其是一段自带样式的react组件,用于企业后台的漂亮的,可控的组件.ant design有很多组件和样式,不可能所有都记住,我们只要记住常用的, ...

  5. flutter从入门到精通四

    widget Flutter 从 React 中吸取灵感(如果有react的编程经验,会很容易理解flutter),通过现代化框架创建出精美的组件. 它的核心思想是用 widget 来构建你的 UI ...

  6. ajax提交异常解决

    一.遇到的问题 在项目中使用ajax提交表单失败,并且后台程序都没有执行,分析具体问题是由于post表单时contenttype的类型不一致. 二.解决方式 $.ajax({ type: 'post' ...

  7. [JZOJ5281]钦点题解--瞎搞+链表

    [JZOJ5281]钦点题解--瞎搞+链表 题目链接 于 暴 力 过

  8. Vue.use()源码分析且执行后干什么了

    直接开始分析源码 // Vue源码文件路径:src/core/global-api/use.js import { toArray } from '../util/index' //initUse函数 ...

  9. CoAP协议

    CoAP(Constrained Application Protocol) CoAP是6LowPAN协议栈中的应用层协议 CoAP是超轻量型协议 CoAP的默认UDP端口号为5683 1. 四种消息 ...

  10. mysql表设计注意点

    [原创]面试官:讲讲mysql表设计要注意啥 需要设计一个主键 因为你不设主键的情况下,innodb也会帮你生成一个隐藏列,作为自增主键.所以啦,反正都要生成一个主键,那你还不如自己指定一个主键,在有 ...