题目链接:

[TJOI2019]大中锋的游乐场

题目本质要求的还是最短路,但因为有第二维权值(汽水看成$+1$,汉堡看成$-1$)的限制,我们在最短路的基础上加上一维$f[i][j]$表示到达$i$节点,权值为$j$的最短路长度,然后像正常最短路那样转移,最后取终点所有状态的最小值即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct lty
{
int val,node,num;
lty(int a,int b,int c){val=a,node=b,num=c;}
};
bool operator <(lty x,lty y){return x.val>y.val;}
int f[10010][30];
int head[10010];
int val[200010];
int v[10010];
int to[200010];
int next[200010];
int n,m,k;
int T;
int tot;
int a,b;
int x,y,z;
int vis[10010][30];
priority_queue<lty>q;
void add(int x,int y,int z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
}
void init()
{
memset(vis,0,sizeof(vis));
memset(head,0,sizeof(head));
tot=0;
}
void dijkstra(int S,int T)
{
for(int i=1;i<=n;i++)
{
for(int j=0;j<=2*k;j++)
{
f[i][j]=1<<30;
}
}
f[S][k+v[S]]=0;
q.push(lty(f[S][k+v[S]],S,k+v[S]));
while(!q.empty())
{
lty now=q.top();
q.pop();
if(vis[now.node][now.num])
{
continue;
}
vis[now.node][now.num]=1;
for(int i=head[now.node];i;i=next[i])
{
if(now.num+v[to[i]]<0||now.num+v[to[i]]>2*k)continue;
if(f[to[i]][now.num+v[to[i]]]>f[now.node][now.num]+val[i])
{
f[to[i]][now.num+v[to[i]]]=f[now.node][now.num]+val[i];
q.push(lty(f[to[i]][now.num+v[to[i]]],to[i],now.num+v[to[i]]));
}
}
}
int ans=1<<30;
for(int i=0;i<=2*k;i++)
{
ans=min(ans,f[T][i]);
}
printf("%d",ans==(1<<30)?-1:ans);
}
void solve()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
if(v[i]==2)
{
v[i]=-1;
}
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
scanf("%d%d",&a,&b);
dijkstra(a,b);
}
int main()
{
scanf("%d",&T);
while(T--)
{
init();
solve();
}
}

[TJOI2019]大中锋的游乐场——最短路+DP的更多相关文章

  1. 【题解】Luogu P5340 [TJOI2019]大中锋的游乐场

    原题传送门 没想到省选也会出这种题??! 实际就是一个带有限制的最短路 因为\(k<=10\),所以我们珂以暴力将每个点的权值分为[-k,k],为了方便我们珂以转化成[0,2k],将汉堡的权值记 ...

  2. [洛谷P5340][TJOI2019]大中锋的游乐场

    题目大意:有$n(n\leqslant10^4)$个点,$m(m\leqslant10^5)$条边的无向图,每个点有一个属性$A/B$,要求$|cnt_A-cnt_B|\leqslant k(k\le ...

  3. luogu P5340 [TJOI2019]大中锋的游乐场

    传送门 要求经过路径汉堡的点和可乐的点个数之差绝对值\(\le k\),所以可以考虑dp,\(f_{i,j}\)表示到点\(i\),汉堡的点个数减可乐的点的个数为\(j\)的最短距离,注意一下负下标处 ...

  4. 「TJOI2019」大中锋的游乐场

    题目链接 问题分析 比较明显的最短路模型.需要堆优化的dij.建图的时候注意细节就好. 参考程序 #include <bits/stdc++.h> #define LL long long ...

  5. [bzoj5511]大中锋的游乐场

    记可乐为1,汉堡为-1,即求过程中绝对值不超过k的最短路. 然后发现k的范围仅为10,也就是说过程中合法的值仅有21种,因此跑一遍dij或spfa(嘿嘿嘿)即可. 1 #include<bits ...

  6. [TJOI2019]甲苯先生和大中锋的字符串——后缀自动机+差分

    题目链接: [TJOI2019]甲苯先生和大中锋的字符串 对原串建后缀自动机并维护$parent$树上每个点的子树大小,显然子树大小为$k$的节点所代表的子串出现过$k$次,那么我们需要将$[len[ ...

  7. 洛谷P5341 [TJOI2019]甲苯先生和大中锋的字符串

    原题链接P5341 [TJOI2019]甲苯先生和大中锋的字符串 题目描述 大中锋有一个长度为 n 的字符串,他只知道其中的一个子串是祖上传下来的宝藏的密码.但是由于字符串很长,大中锋很难将这些子串一 ...

  8. [USACO07NOV]牛继电器Cow Relays (最短路,DP)

    题目链接 Solution 非正解 似乎比较蛇啊,先个一个部分分做法,最短路+\(DP\). 在求最短路的堆或者队列中存储元素 \(dis_{i,j}\) 代表 \(i\) 这个节点,走了 \(j\) ...

  9. bzoj1003物流运输 最短路+DP

    bzoj1003物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输 ...

随机推荐

  1. openssl 证书cert与key合并pfx

    openssl pkcs12 -export -out server.pfx -inkey server.key -in server.crt

  2. ios 日常开发常用宏定义

      #pragma mark - 字体.颜色相关 #define kFONT_SIZE(f) [UIFont systemFontOfSize:(f)] #define kFONT_BOLD_SIZE ...

  3. volatile和锁

    让编译器不要将变量缓存到寄存器,而是每次去访问主板上的内存 可见性 对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入 原子性 对任意单个volatile变量的 ...

  4. iOS NSNotificationCenter 使用姿势详解

    最近在做平板的过程中,发现了一些很不规范的代码.偶然修复支付bug的时候,看到其他项目代码,使用通知的地方没有移除,我以为我这个模块的支付闪退是因为他通知没有移除的缘故.而在debug和看了具体的代码 ...

  5. 编译安装的httpd实现服务脚本,通过service和chkconfig进行管理

    把编译安装的httpd 实现服务脚本,通过service和chkconfig 进行管理 1 编译安装httpd 把httpd编译安装在/app/httpd/目录下. 2 在/etc/rc.d/init ...

  6. zabbix server for Centos 6.3

    1.安装LNMP 参照http://lnmp.org/install.html 2.安装zabbix service 2.1下载zabbix,并解压 wget http://nchc.dl.sourc ...

  7. linux网络编程之socket编程(十五)

    今天继续学习socket编程,这次主要是学习UNIX域协议相关的知识,下面开始: [有个大概的认识,它是来干嘛的] ①.UNIX域套接字与TCP套接字相比较,在同一台主机的传输速度前者是后者的两倍. ...

  8. vue 自定义事件

  9. vue-cli 创建项目不成功 原因为项目文件夹无node_modules文件 进行npm install不成功解决办法

    不知道有没有童鞋出现过全局安装vue-cli是成功的,但是创建项目时命令行报了很多错误,如下 本来是需要按照提示依次切换到项目文件夹,再npm run dev 即可完成项目创建并启动的,但是又报了如下 ...

  10. 数据库概念 MySQL语法

    数据库概念 将保存的数据部分,存到一个公共的地方,所有的用户涉及到数据相关都必须来这个公共地方查找 MySQL 本质就是一款基于网络通信的应用软件,任何基于网络通信的软件底层都是socket 可以把M ...