LightOJ - 1151

思路:

将期望dp[x]看成自变量,那么递推式就可以看成方程组,用高斯消元求方程组的解就能求解出期望值

高斯消元求解的过程也是期望逆推的过程,注意边界情况的常数项,是6/d,不是1

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb emplace_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head const int N = ;
double A[N][N];
void Gauss(int n) {
for(int i = ; i < n; i ++) {
int r = i;
for(int j = i + ; j < n; j ++)
if(fabs(A[j][i]) > fabs(A[r][i])) r = j;
if(r != i) for(int j = ; j <= n; j ++) swap(A[r][j], A[i][j]); for(int j = n; j >= i; j --) {
for(int k = i + ; k < n; k ++)
A[k][j] -= A[k][i] / A[i][i] * A[i][j];
}
} for(int i = n - ; i >= ; i --) {
for(int j = i + ; j < n; j ++)
A[i][n] -= A[j][n] * A[i][j];
A[i][n] /= A[i][i];
}
}
int T, n, a, b, to[];
int main() {
scanf("%d", &T);
for(int cs = ; cs <= T; ++cs) {
scanf("%d", &n);
for (int i = ; i <= ; ++i) to[i] = ;
for (int i = ; i <= n; ++i) scanf("%d %d", &a, &b), to[a] = b; for (int i = ; i <= ; ++i) for (int j = ; j <= ; ++j) A[i][j] = ;
for (int i = ; i <= ; ++i) {
A[i-][i-] = ;
if(to[i]) {
A[i-][to[i]-] = -;
}
else {
int x = min(, -i);
for (int j = ; j <= x; ++j) {
A[i-][i+j-] = -1.0/x;
}
if(i < ) A[i-][] = 6.0/x;
}
}
Gauss();
printf("Case %d: %.10f\n", cs, A[][]);
}
return ;
}

LightOJ - 1151 Snakes and Ladders的更多相关文章

  1. LightOJ - 1151 Snakes and Ladders —— 期望、高斯消元法

    题目链接:https://vjudge.net/problem/LightOJ-1151 1151 - Snakes and Ladders    PDF (English) Statistics F ...

  2. LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP

    首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...

  3. LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)

    题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...

  4. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  5. LightOJ - 1151 Snakes and Ladders(概率dp+高斯消元)

    有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格子,G[i]表示从i传送到G[i].1和100不会有传送,一个格子也不会有两 ...

  6. [lightoj P1151] Snakes and Ladders

    1151 - Snakes and Ladders Time Limit: 2 second(s)    Memory Limit: 32 MB 'Snakes and Ladders' or 'Sh ...

  7. light oj 1151 - Snakes and Ladders 高斯消元+概率DP

    思路: 在没有梯子与蛇的时候很容易想到如下公式: dp[i]=1+(∑dp[i+j])/6 但是现在有梯子和蛇也是一样的,初始化p[i]=i; 当有梯子或蛇时转移为p[a]=b; 这样方程变为: dp ...

  8. Snakes and Ladders LightOJ - 1151( 概率dp+高斯消元)

    Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格 ...

  9. [Swift]LeetCode909. 蛇梯棋 | Snakes and Ladders

    On an N x N board, the numbers from 1 to N*N are written boustrophedonically starting from the botto ...

随机推荐

  1. markdown语法(测试自用)

    Markdown语法主要分为几大部分:标题.段落.区块引用.代码区块.强调.列表.分割线.链接.图片.反斜杠.符号'`' 1.标题 两种形式 1)使用 = 和 - 标记一级标题和二级标题 一级标题 二 ...

  2. php 阿里云国内短信实例

    调用:先去阿里云申请短信服务 $smsArr = array( "accessKeyId" => "", // key "accessKeySe ...

  3. 最新 盛天网络java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.盛天网络等10家互联网公司的校招Offer,因为某些自身原因最终选择了盛天网络.6.7月主要是做系统复习.项目复盘.Leet ...

  4. Postman 下载和使用

    Postman 的官网下载地址是:https://www.getpostman.com/apps/

  5. Oracle 数据库 alert日志及trace日志的清理

    Oracle 数据库 alert日志及trace日志的清理 方案一: 暂停数据库的trace 登录到数据库 sqlplus / as sysdba 修改参数: SQL> alter system ...

  6. if("\v"=="v")来判断IE浏览器

    if(!+"\v1"){ IE代码}else{ 其他浏览器代码} if("\v"=="v"){//true为IE浏览器, document. ...

  7. [转帖]英特尔首次使用其3D堆叠架构演示Lakefield芯片设计

    英特尔首次使用其3D堆叠架构演示Lakefield芯片设计 http://www.chinapeace.org.cn/keji/201904/2812749.html 这段时间学习最大的收获: . 发 ...

  8. Java基础---Java常量

    常量:在程序运行期间不变的量 分类: 类型  含义 数据举例 整数常量 所有整数 0,1, 567, -9 小数常量 所有小数 0.0, -0.1, 2.55 字符常量 单引号引起来,只能写一个字符, ...

  9. Linux_Ubantu下编译c++文件

    1. 编译单个文件 利用cmake进行编译 首先在项目文件夹中创建.cpp文件  利用最简单的 hello world #include<iostream> using namespace ...

  10. 笔记-6:mysql索引

    1.索引概述 建立索引的目的:加快数据库检索的速度. mysql中索引主要分为: 普通索引:使用index或key关键字创建,其索引列值可以取空值或重复值. 唯一性索引:使用关键字UNIQUE创建,其 ...