https://www.youtube.com/watch?v=XOGIDMJThto

https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/9-Asynchonous-compute.pdf

https://docs.microsoft.com/en-us/windows/win32/direct3d12/user-mode-heap-synchronization

https://gpuopen.com/concurrent-execution-asynchronous-queues/

通过queue的并行 增加GPU的并行

并发性 concurrency

Radeon™ Fury X GPU consists of 64 Compute Units (CUs), each of those containing 4 Single-Instruction-Multiple-Data units (SIMD) and each SIMD executes blocks of 64 threads, which we call a “wavefront”.

Since latency for memory access can cause significant stalls in shader execution, up to 10 wavefronts can be scheduled on each SIMD simultaneously to hide this latency.

GPU有64个CU

每个CU 4个SIMD

每个SIMD 64blocks ----- 一个wavefront

ps的计算在里面

GPU提升并发性 减小GPU idel

async compute

  • Copy Queue(DirectX 12) / Transfer Queue (Vulkan): DMA transfers of data over the PCIe bus
  • Compute queue (DirectX 12 and Vulkan): execute compute shaders or copy data, preferably within local memory
  • Direct Queue (DirectX 12) / Graphics Queue (Vulkan):  this queue can do anything, so it is similar to the main device in legacy APIs

这三种queue对应metal里面三种encoder 是为了增加上文所述并发性

对GPU底层的 操作这种可行性是通过这里的queue体现的

vulkan对queue的个数有限制 可以query

dx12没有这种个数限制

更多部分拿出来用cs做异步计算

看图--技能点还没点

problem shooting

  • If resources are located in system memory accessing those from Graphics or Compute queues will have an impact on DMA queue performance and vice versa.
  • Graphics and Compute queues accessing local memory (e.g. fetching texture data, writing to UAVs or performing rasterization-heavy tasks) can affect each other due to bandwidth limitations  带宽限制 数据onchip
  • Threads sharing the same CU will share GPRs and LDS, so tasks that use all available resources may prevent asynchronous workloads to execute on the same CU
  • Different queues share their caches. If multiple queues utilize the same caches this can result in more cache thrashing and reduce performance

Due to the reasons above it is recommended to determine bottlenecks for each pass and place passes with complementary bottlenecks next to each other:

  • Compute shaders which make heavy use of LDS and ALU are usually good candidates for the asynchronous compute queue
  • Depth only rendering passes are usually good candidates to have some compute tasks run next to it
  • A common solution for efficient asynchronous compute usage can be to overlap the post processing of frame N with shadow map rendering of frame N+1
  • Porting as much of the frame to compute will result in more flexibility when experimenting which tasks can be scheduled next to each other
  • Splitting tasks into sub-tasks and interleaving them can reduce barriers and create opportunities for efficient async compute usage (e.g. instead of “for each light clear shadow map, render shadow, compute VSM” do “clear all shadow maps, render all shadow maps, compute VSM for all shadow maps”)

然后给异步计算的功能加上开关

看vulkan这个意思 它似乎没有metal2 那种persistent thread group 维持数据cs ps之间传递时还可以 on tile

vulkan asynchronous compute的更多相关文章

  1. Vulkan在Android使用Compute shader

    oeip 相关功能只能运行在window平台,想移植到android平台,暂时选择vulkan做为图像处理,主要一是里面有单独的计算管线且支持好,二是熟悉下最新的渲染技术思路. 这个 demo(git ...

  2. android下vulkan与opengles纹理互通

    先放demo源码地址:https://github.com/xxxzhou/aoce 06_mediaplayer 效果图: 主要几个点: 用ffmpeg打开rtmp流. 使用vulkan Compu ...

  3. 剖析虚幻渲染体系(13)- RHI补充篇:现代图形API之奥义与指南

    目录 13.1 本篇概述 13.1.1 本篇内容 13.1.2 概念总览 13.1.3 现代图形API特点 13.2 设备上下文 13.2.1 启动流程 13.2.2 Device 13.2.3 Sw ...

  4. GPUImage移植总结

    项目github地址: aoce 我是去年年底才知道有GPUImage这个项目,以前也一直没有在移动平台开发过,但是我在win平台有编写一个类似的项目oeip(不要关注了,所有功能都移植或快移植到ao ...

  5. Compute Resource Consolidation Pattern 计算资源整合模式

    Consolidate multiple tasks or operations into a single computational unit. This pattern can increase ...

  6. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  7. Vulkan Tutorial 13 Render passes

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Setup 在我们完成管线的创建工作,我们接下来需要告诉Vulkan渲染时候使用的f ...

  8. Vulkan Tutorial 16 Command buffers

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 诸如绘制和内存操作相关命令,在Vulkan中不是通过函数直接调用的.我们需要在命令缓 ...

  9. Vulkan Tutorial 29 Loading models

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 应用程序现在已经可以渲染纹理3D模型,但是 vertice ...

随机推荐

  1. pptpd的log整理

    前言: 最近有时候,我的pptpd会莫名崩掉.这时,在外边的我连不到内网,气的一比. 这时候,就需要去查一查log日志了.   所以就记录一下怎么调日志的: 1. 修改/etc/ppp/pptpd.o ...

  2. String类基础的那些事!

    第三阶段 JAVA常见对象的学习 第一章 常见对象--String类 (一) String 类的概述及其构造方法 (1) 概述 多个字符组成的一串数据,例如 "abc" 也可以看成 ...

  3. vue2.0 + npm + webpack 开发===环境配置

     cnpm安装:npm install -g cnpm --registry=http://registry.npm.taobao.org 1.安装vue-cli脚手架构建工具cnpm install ...

  4. .Net Core 3.0原生Json解析器

    微软官方博客中描述了为什么构造了全新的Json解析器而不是继续使用行业准则Json.Net 微软博客地址:https://devblogs.microsoft.com/dotnet/try-the-n ...

  5. quartz报错 org.quartz.impl.StdSchedulerFactory.

    quartz任务执行报错 Exception in thread "main" java.lang.NoClassDefFoundError: org/slf4j/LoggerFa ...

  6. jQuery获取当前checkbox的值

    背景: 目前想实现登录的“记住我”功能,需要获取当前checkbox是否被点击,百度了一通,全是多个复选框选中了哪一个的解答, 迫于无奈,自己在W3school上面查询了checkbox的所有属性,并 ...

  7. RabbitMQ安装&简单使用

    .什么是RabbitMQ.详见 http://www.rabbitmq.com/. 作用就是提高系统的并发性,将一些不需要及时响应客户端且占用较多资源的操作,放入队列,再由另外一个线程,去异步处理这些 ...

  8. image的路径写法格式

    if (MapGrid.Visibility == Visibility.Visible) {      this.MapGrid.Visibility = Visibility.Collapsed; ...

  9. 轻松搭建CAS 5.x系列(2)-搭建HTTPS的SSO SERVER端

    概要说明 CAS要求,必须使用HTTPS的服务,否则就只等实现登录,无法实现单点登录.科普下HTTPS,网站有HTTP和HTTPS两种协议.HTTP是浏览器到网站之间是明文传输,比如你输入帐号名和密码 ...

  10. python selenium5 模拟点击+拖动+按照指定相对坐标拖动 58同城验证码

    #!/usr/bin/python # -*- coding: UTF-8 -*- # @Time : 2019年12月9日11:41:08 # @Author : shenghao/10347899 ...