vulkan asynchronous compute
https://www.youtube.com/watch?v=XOGIDMJThto
https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/9-Asynchonous-compute.pdf
https://docs.microsoft.com/en-us/windows/win32/direct3d12/user-mode-heap-synchronization
https://gpuopen.com/concurrent-execution-asynchronous-queues/
通过queue的并行 增加GPU的并行
并发性 concurrency
Radeon™ Fury X GPU consists of 64 Compute Units (CUs), each of those containing 4 Single-Instruction-Multiple-Data units (SIMD) and each SIMD executes blocks of 64 threads, which we call a “wavefront”.
Since latency for memory access can cause significant stalls in shader execution, up to 10 wavefronts can be scheduled on each SIMD simultaneously to hide this latency.
GPU有64个CU
每个CU 4个SIMD
每个SIMD 64blocks ----- 一个wavefront
ps的计算在里面
GPU提升并发性 减小GPU idel
async compute
- Copy Queue(DirectX 12) / Transfer Queue (Vulkan): DMA transfers of data over the PCIe bus
- Compute queue (DirectX 12 and Vulkan): execute compute shaders or copy data, preferably within local memory
- Direct Queue (DirectX 12) / Graphics Queue (Vulkan): this queue can do anything, so it is similar to the main device in legacy APIs
这三种queue对应metal里面三种encoder 是为了增加上文所述并发性
对GPU底层的 操作这种可行性是通过这里的queue体现的
vulkan对queue的个数有限制 可以query
dx12没有这种个数限制
更多部分拿出来用cs做异步计算
看图--技能点还没点
problem shooting
- If resources are located in system memory accessing those from Graphics or Compute queues will have an impact on DMA queue performance and vice versa.
- Graphics and Compute queues accessing local memory (e.g. fetching texture data, writing to UAVs or performing rasterization-heavy tasks) can affect each other due to bandwidth limitations 带宽限制 数据onchip
- Threads sharing the same CU will share GPRs and LDS, so tasks that use all available resources may prevent asynchronous workloads to execute on the same CU
- Different queues share their caches. If multiple queues utilize the same caches this can result in more cache thrashing and reduce performance
Due to the reasons above it is recommended to determine bottlenecks for each pass and place passes with complementary bottlenecks next to each other:
- Compute shaders which make heavy use of LDS and ALU are usually good candidates for the asynchronous compute queue
- Depth only rendering passes are usually good candidates to have some compute tasks run next to it
- A common solution for efficient asynchronous compute usage can be to overlap the post processing of frame N with shadow map rendering of frame N+1
- Porting as much of the frame to compute will result in more flexibility when experimenting which tasks can be scheduled next to each other
- Splitting tasks into sub-tasks and interleaving them can reduce barriers and create opportunities for efficient async compute usage (e.g. instead of “for each light clear shadow map, render shadow, compute VSM” do “clear all shadow maps, render all shadow maps, compute VSM for all shadow maps”)
然后给异步计算的功能加上开关
看vulkan这个意思 它似乎没有metal2 那种persistent thread group 维持数据cs ps之间传递时还可以 on tile
vulkan asynchronous compute的更多相关文章
- Vulkan在Android使用Compute shader
oeip 相关功能只能运行在window平台,想移植到android平台,暂时选择vulkan做为图像处理,主要一是里面有单独的计算管线且支持好,二是熟悉下最新的渲染技术思路. 这个 demo(git ...
- android下vulkan与opengles纹理互通
先放demo源码地址:https://github.com/xxxzhou/aoce 06_mediaplayer 效果图: 主要几个点: 用ffmpeg打开rtmp流. 使用vulkan Compu ...
- 剖析虚幻渲染体系(13)- RHI补充篇:现代图形API之奥义与指南
目录 13.1 本篇概述 13.1.1 本篇内容 13.1.2 概念总览 13.1.3 现代图形API特点 13.2 设备上下文 13.2.1 启动流程 13.2.2 Device 13.2.3 Sw ...
- GPUImage移植总结
项目github地址: aoce 我是去年年底才知道有GPUImage这个项目,以前也一直没有在移动平台开发过,但是我在win平台有编写一个类似的项目oeip(不要关注了,所有功能都移植或快移植到ao ...
- Compute Resource Consolidation Pattern 计算资源整合模式
Consolidate multiple tasks or operations into a single computational unit. This pattern can increase ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- Vulkan Tutorial 13 Render passes
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Setup 在我们完成管线的创建工作,我们接下来需要告诉Vulkan渲染时候使用的f ...
- Vulkan Tutorial 16 Command buffers
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 诸如绘制和内存操作相关命令,在Vulkan中不是通过函数直接调用的.我们需要在命令缓 ...
- Vulkan Tutorial 29 Loading models
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 应用程序现在已经可以渲染纹理3D模型,但是 vertice ...
随机推荐
- kibana 设置登录认证
kibana 设置登录认证 SlowGO 2018.11.21 14:56 字数 59 阅读 658评论 0喜欢 0 kibana 本身没有用户名密码的设置,可以使用 nginx 来实现. 步骤 (1 ...
- 导入/导出 数据库/数据库表(wordpress做例子)
导入数据库: 1. 数据库层面: 没有wordpress的情况下,建立wordpress数据库 create database wordpress; 进入wordpress数据库 use wordpr ...
- 自学电脑游戏第三天(Swing组件)
Swing组件 1.按钮(Jbutton) 示例:选择用户所喜欢的城市. import java.awt.*; import java.awt.event.*; import javax.swing. ...
- 《MIT 6.828 Lab1: Booting a PC》实验报告
<MIT 6.828 Lab1: Booting a PC>实验报告 本实验的网站链接见:Lab 1: Booting a PC. 实验内容 熟悉x86汇编语言.QEMU x86仿真器.P ...
- [CF1065F]Up and Down the Tree_tarjan_树形dp
Up and Down the Tree 题目链接:https://www.luogu.org/problem/CF1065F 数据范围:略. 题解: 我们把每个叶子向它上面$k$个点连边,然后tra ...
- Spring4学习回顾之路10-Spring4.x新特性:泛型依赖注入
泛型依赖注入:Spring 4.x中可以为子类注入子类对应的泛型类型的成员变量的引用. 话语太过抽象,直接看代码案例,依次建立如下代码: User.java package com.lql.sprin ...
- A<=B的前提下全排列A使答案尽量大
题意:http://codeforces.com/problemset/problem/915/C 举个例子:假使排好序后a字符串是123456,b是456456,按照上述方法遍历,213456 -& ...
- PostgreSQL练习
学生表 Studentcreate table Student(Sid varchar(6), Sname varchar(10), Sage datetime, Ssex varchar(10)); ...
- Java Web-EL表达式 in JSP
Java Web-EL表达式 in JSP 概念 EL(Expression Language)是一种表达式语言,可以替换和简化JSP页面上JAVA代码的书写 语法 ${<在这里写表达式> ...
- IOS 跳转页面
1. 跳转界面,关闭自身 LoginViewController *loginViewController = [[LoginViewController alloc]initWithNibName: ...