https://www.youtube.com/watch?v=XOGIDMJThto

https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/9-Asynchonous-compute.pdf

https://docs.microsoft.com/en-us/windows/win32/direct3d12/user-mode-heap-synchronization

https://gpuopen.com/concurrent-execution-asynchronous-queues/

通过queue的并行 增加GPU的并行

并发性 concurrency

Radeon™ Fury X GPU consists of 64 Compute Units (CUs), each of those containing 4 Single-Instruction-Multiple-Data units (SIMD) and each SIMD executes blocks of 64 threads, which we call a “wavefront”.

Since latency for memory access can cause significant stalls in shader execution, up to 10 wavefronts can be scheduled on each SIMD simultaneously to hide this latency.

GPU有64个CU

每个CU 4个SIMD

每个SIMD 64blocks ----- 一个wavefront

ps的计算在里面

GPU提升并发性 减小GPU idel

async compute

  • Copy Queue(DirectX 12) / Transfer Queue (Vulkan): DMA transfers of data over the PCIe bus
  • Compute queue (DirectX 12 and Vulkan): execute compute shaders or copy data, preferably within local memory
  • Direct Queue (DirectX 12) / Graphics Queue (Vulkan):  this queue can do anything, so it is similar to the main device in legacy APIs

这三种queue对应metal里面三种encoder 是为了增加上文所述并发性

对GPU底层的 操作这种可行性是通过这里的queue体现的

vulkan对queue的个数有限制 可以query

dx12没有这种个数限制

更多部分拿出来用cs做异步计算

看图--技能点还没点

problem shooting

  • If resources are located in system memory accessing those from Graphics or Compute queues will have an impact on DMA queue performance and vice versa.
  • Graphics and Compute queues accessing local memory (e.g. fetching texture data, writing to UAVs or performing rasterization-heavy tasks) can affect each other due to bandwidth limitations  带宽限制 数据onchip
  • Threads sharing the same CU will share GPRs and LDS, so tasks that use all available resources may prevent asynchronous workloads to execute on the same CU
  • Different queues share their caches. If multiple queues utilize the same caches this can result in more cache thrashing and reduce performance

Due to the reasons above it is recommended to determine bottlenecks for each pass and place passes with complementary bottlenecks next to each other:

  • Compute shaders which make heavy use of LDS and ALU are usually good candidates for the asynchronous compute queue
  • Depth only rendering passes are usually good candidates to have some compute tasks run next to it
  • A common solution for efficient asynchronous compute usage can be to overlap the post processing of frame N with shadow map rendering of frame N+1
  • Porting as much of the frame to compute will result in more flexibility when experimenting which tasks can be scheduled next to each other
  • Splitting tasks into sub-tasks and interleaving them can reduce barriers and create opportunities for efficient async compute usage (e.g. instead of “for each light clear shadow map, render shadow, compute VSM” do “clear all shadow maps, render all shadow maps, compute VSM for all shadow maps”)

然后给异步计算的功能加上开关

看vulkan这个意思 它似乎没有metal2 那种persistent thread group 维持数据cs ps之间传递时还可以 on tile

vulkan asynchronous compute的更多相关文章

  1. Vulkan在Android使用Compute shader

    oeip 相关功能只能运行在window平台,想移植到android平台,暂时选择vulkan做为图像处理,主要一是里面有单独的计算管线且支持好,二是熟悉下最新的渲染技术思路. 这个 demo(git ...

  2. android下vulkan与opengles纹理互通

    先放demo源码地址:https://github.com/xxxzhou/aoce 06_mediaplayer 效果图: 主要几个点: 用ffmpeg打开rtmp流. 使用vulkan Compu ...

  3. 剖析虚幻渲染体系(13)- RHI补充篇:现代图形API之奥义与指南

    目录 13.1 本篇概述 13.1.1 本篇内容 13.1.2 概念总览 13.1.3 现代图形API特点 13.2 设备上下文 13.2.1 启动流程 13.2.2 Device 13.2.3 Sw ...

  4. GPUImage移植总结

    项目github地址: aoce 我是去年年底才知道有GPUImage这个项目,以前也一直没有在移动平台开发过,但是我在win平台有编写一个类似的项目oeip(不要关注了,所有功能都移植或快移植到ao ...

  5. Compute Resource Consolidation Pattern 计算资源整合模式

    Consolidate multiple tasks or operations into a single computational unit. This pattern can increase ...

  6. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  7. Vulkan Tutorial 13 Render passes

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Setup 在我们完成管线的创建工作,我们接下来需要告诉Vulkan渲染时候使用的f ...

  8. Vulkan Tutorial 16 Command buffers

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 诸如绘制和内存操作相关命令,在Vulkan中不是通过函数直接调用的.我们需要在命令缓 ...

  9. Vulkan Tutorial 29 Loading models

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 应用程序现在已经可以渲染纹理3D模型,但是 vertice ...

随机推荐

  1. spring中的bean的生命周期

    bean的生命周期:bean的创建 —— 初始化 ——销毁的过程 容器管理bean的生命周期,我们可以自定义初始化和销毁方法,容器在bean进行到当前生命周期就会调用我们的方法 在xml配置文件中是在 ...

  2. Centos7 添加开机启动服务

    1.在/usr/lib/systemd/system/下创建服务脚本xxx.service,格式如下: [Unit] Description=Scrapyd After=syslog.target n ...

  3. Hadoop环境搭建过程中遇到的问题以及解决方法

    1.启动hadoop之前,ssh免密登录slave主机正常,使用命令start-all.sh启动hadoop时,需要输入slave主机的密码,说明ssh文件权限有问题,需要执行以下操作: 1)进入.s ...

  4. 【AtCoder】M-SOLUTIONS Programming Contest

    M-SOLUTIONS Programming Contest A - Sum of Interior Angles #include <bits/stdc++.h> #define fi ...

  5. 最大流Dinic(模板)

    #define IOS ios_base::sync_with_stdio(0); cin.tie(0); #include <cstdio>//sprintf islower isupp ...

  6. php中的访问类型(public,private,protected)

    类型的访问修饰符允许开发人员对类成员的访问进行限制,这是PHP5的新特性.但却是oop语言的一个好的特性.而且大多数的oop语言都已支持此特性.PHP5支持三种访问修饰符: public(公有的,默认 ...

  7. Java 字符串比较

    1.字符串比较 compareTo() 方法用于两种方式的比较: 字符串与对象进行比较. 按字典顺序比较两个字符串. 返回值 返回值是整型,它是先比较对应字符的大小(ASCII码顺序),如果第一个字符 ...

  8. Error starting daemon: error initializing graphdriver: devmapper: Device docker-thinpool is not a thin pool

    Error starting daemon: error initializing graphdriver: devmapper: Device docker-thinpool is not a th ...

  9. 图数据库-Neo4j-初探

    图数据库-Neo4j-初探 2018-08-17 本次初探主要学习如何安装Neo4j,以及Cypher的基本语法. 1. 安装Neo4j Desktop版本 neo4j-desktop Server版 ...

  10. poj 1753高斯

    和前面的开关问题差不多,就是要理解一下我们方程等号的右端代表的含义是什么.我们建立的方程是想让对位的位置变或者不变,然后生成增广矩阵的时候要多注意一点. ac代码: #include #include ...