看到删去一个点,需要剩下的都和关键点连通,有端联想到找点双,因为他怎么删点都是连通的。

对于一个孤立的点双,至少要设两个关键点。

如果两个点双以一个割点连接,假设断掉这个割点,两个块至少要各设一个关键点。类推,所以对于所有含有一个割点的点双,至少要包含非割点的一个关键点。

如果一个点双上有好多个割点,可以不设点,因为把图看成缩掉点双的一棵树,有一个割点的点双一定在叶子处,有多个割点的点双因为有许多树枝,删掉一个,一定可以仍与某一方的叶子(也就是位于叶子处的点双中的关键点)连通,所以不要设。

这样,讨论完毕,统计方案也就很好搞了。

注意一点:孤立点要特判,因为他只要设一个点。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef unsigned long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+;
map<int,int> mp;
struct thxorz{int to,nxt;}G[N];
int Head[N],tot;
int n,m,ans,T;
ll typ;
inline void Addedge(int x,int y){
G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot;
G[++tot].to=x,G[tot].nxt=Head[y],Head[y]=tot;
}
#define y G[j].to
vector<int> dcc[N];
int dfn[N],low[N],stk[N],cut[N],cnt,rt,Top,dcnt;
void tarjan(int x){
dfn[x]=low[x]=++cnt;int chd=;
if(x==rt&&!Head[x]){dcc[++dcnt].push_back(x);return;}
stk[++Top]=x;
for(register int j=Head[x];j;j=G[j].nxt){
if(!dfn[y]){
++chd;tarjan(y);MIN(low[x],low[y]);//forget MIN...
if(low[y]==dfn[x]){//or low[y]>=dfn[x]
if(x==rt&&chd>=||x^rt)cut[x]=;
int tmp;++dcnt;
do tmp=stk[Top--],dcc[dcnt].push_back(tmp);while(tmp^y);
dcc[dcnt].push_back(x);
}
}
else MIN(low[x],dfn[y]);
}
}
#undef y
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
while(read(m),m){
mp.clear();n=ans=;typ=;
memset(Head,,sizeof Head);tot=;
for(register int i=,x,y;i<=m;++i){
read(x),read(y);
if(mp.find(x)==mp.end())mp[x]=++n;
if(mp.find(y)==mp.end())mp[y]=++n;
Addedge(mp[x],mp[y]);
}
memset(dfn,,sizeof dfn),memset(low,,sizeof low),memset(cut,,sizeof cut);dcnt=cnt=;
for(register int i=;i<=n;++i)if(!dfn[i])Top=,rt=i,tarjan(i);
for(register int i=,tt=,siz;i<=dcnt;++i,tt=){
for(register int j=;j<dcc[i].size();++j)if(cut[dcc[i][j]])++tt;
siz=dcc[i].size();
if(siz==)++ans;
else if(!tt)ans+=,typ*=siz*(siz-)/;
else if(tt==)++ans,typ*=(siz-);
dcc[i].clear();
}
printf("Case %d: %d %llu\n",++T,ans,typ);
}
return ;
}

智障WA:line42的MIN漏写了。。果然tarjan还是不熟练啊。

总结:遇到删点和连通性联系在一起的问题时多往点双上想一想,当然凡是点双都要考虑比较特殊的情况,如:2个点,以及孤立点。

BZOJ2730 [HNOI2012]矿场搭建[点双连通分量]的更多相关文章

  1. 【BZOJ-2730】矿场搭建 Tarjan 双连通分量

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1602  Solved: 751[Submit][Statu ...

  2. [BZOJ2730][HNOI2012]矿场搭建 点双 割点

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2852  Solved: 1344[Submit][Stat ...

  3. bzoj2730 [HNOI2012]矿场搭建 (UVAlive5135 Mining Your Own Business)

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1147  Solved: 528[Submit][Statu ...

  4. [HNOI2012]矿场搭建 (点双连通)

    题目 [HNOI2012]矿场搭建 解析 这个题做的我十分自闭.. 没看出这个是个点双,然后一晚上+半上午.. 一看肯定和割点有关,我们找到所有的点双,会发现有这么几种情况 连通块中一个割点也没有,这 ...

  5. 【双连通分量】Bzoj2730 HNOI2012 矿场搭建

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  6. BZOJ2730:[HNOI2012]矿场搭建(双连通分量)

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  7. bzoj2730矿场搭建——点双连通分量

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2730 首先一遍tarjan找出割点,将图缩点,这些大点中如果有只包含一个割点的,那么如果这个 ...

  8. BZOJ2730——[HNOI2012]矿场搭建

    bzoj2730 & world final 2011 H 1.题目大意:就是有一个无向图,让你在里面选择点,使得,无论哪个点没了以后,其他的点都能到达你选择的任何一个点,输出最少 选择几个点 ...

  9. BZOJ2730 [HNOI2012]矿场搭建 - Tarjan割点

    Solution 输入中没有出现过的矿场点是不用考虑的, 所以不用考虑只有 一个点 的点双联通分量. 要使某个挖矿点倒塌, 相当于割去这个点, 所以我们求一遍割点和点双联通分量. 之后的点双联通分量构 ...

随机推荐

  1. web漏洞

    *参考网站 https://cxsecurity.com/ https://www.exploit-db.com/ https://www.seebug.org/ http://www.securit ...

  2. 【贪心科技】贪心科技内容合伙人关于AI公司及创业的演讲笔记

    贪心科技内容合伙人关于AI公司及创业的演讲笔记 视频 目录 一.投资角度对 AI 的两个基本认知 二.简单分析 AI 公司的两个纬度四个层面 三.AI 垂直行业应用的三点中美对比 四.给创业者的四个建 ...

  3. SQL SERVER导入EXCEL文件:未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供程序

    1.安装相关组件  2.程序生成属性32位改为64位

  4. 小菜鸟之oracle

    oracle 存储过程 函数 创建 删除 参数 传递 函数 查看 包 系统包 分类: Oracle 2011-10-27 17:31 264人阅读 评论(0) 收藏 举报   认识存储过程和函数 存储 ...

  5. 初识RedisCluster集群

    为什么需要Redis集群 需要提高更大的并发量 Redis官方提出拥有10万QPS的请求量 如果业务需要Redis拥有100万的QPS 可以通过集群来提升并发量. 需要存储更大的数据量 一般服务器的机 ...

  6. 【Python基础】02_Python中变量的输入输出

    1.变量的输入: input函数: input() input("请输入银行卡密码") password = input("请输入银行卡密码") 变量名 = i ...

  7. 第十章 ZYNQ-MIZ701 DDR3 PS读写操作方案

      本编文章的目的主要用简明的方法在纯PS里对DDR3进行读写. 本文所使用的开发板是Miz701 PC 开发环境版本:Vivado 2015.4 Xilinx SDK 2015.4 10.0本章难度 ...

  8. hdu 3364 高斯入门。。

    扣了一个高斯的介绍 比较全面(来自http://blog.csdn.net/duanxian0621/article/details/7408887) 高斯消元法,是线性代数中的一个算法,可用来求解线 ...

  9. Api文档生成工具与Api文档的传播(pdf)

    点击查看apidoc生成文档demo 1 环境和工具 win10 apidoc:注释生成api文档 wkhtmltopdf:apidoc生成的是html,不适合传播,于是通过wkhtmltopdf将h ...

  10. react 管理平台

    https://open.vbill.cn/react-admin/ 开源中国:https://gitee.com/sxfad/react-admin.git GitHub:https://githu ...