CoderForces999F-Cards and Joy
2 seconds
256 megabytes
standard input
standard output
There are nn players sitting at the card table. Each player has a favorite number. The favorite number of the jj-th player is fjfj.
There are k⋅nk⋅n cards on the table. Each card contains a single integer: the ii-th card contains number cici. Also, you are given a sequence h1,h2,…,hkh1,h2,…,hk. Its meaning will be explained below.
The players have to distribute all the cards in such a way that each of them will hold exactly kk cards. After all the cards are distributed, each player counts the number of cards he has that contains his favorite number. The joy level of a player equals htht if the player holds tt cards containing his favorite number. If a player gets no cards with his favorite number (i.e., t=0t=0), his joy level is 00.
Print the maximum possible total joy levels of the players after the cards are distributed. Note that the sequence h1,…,hkh1,…,hk is the same for all the players.
The first line of input contains two integers nn and kk (1≤n≤500,1≤k≤101≤n≤500,1≤k≤10) — the number of players and the number of cards each player will get.
The second line contains k⋅nk⋅n integers c1,c2,…,ck⋅nc1,c2,…,ck⋅n (1≤ci≤1051≤ci≤105) — the numbers written on the cards.
The third line contains nn integers f1,f2,…,fnf1,f2,…,fn (1≤fj≤1051≤fj≤105) — the favorite numbers of the players.
The fourth line contains kk integers h1,h2,…,hkh1,h2,…,hk (1≤ht≤1051≤ht≤105), where htht is the joy level of a player if he gets exactly tt cards with his favorite number written on them. It is guaranteed that the condition ht−1<htht−1<ht holds for each t∈[2..k]t∈[2..k].
Print one integer — the maximum possible total joy levels of the players among all possible card distributions.
4 3
1 3 2 8 5 5 8 2 2 8 5 2
1 2 2 5
2 6 7
21
3 3
9 9 9 9 9 9 9 9 9
1 2 3
1 2 3
0
In the first example, one possible optimal card distribution is the following:
- Player 11 gets cards with numbers [1,3,8][1,3,8];
- Player 22 gets cards with numbers [2,2,8][2,2,8];
- Player 33 gets cards with numbers [2,2,8][2,2,8];
- Player 44 gets cards with numbers [5,5,5][5,5,5].
Thus, the answer is 2+6+6+7=212+6+6+7=21.
In the second example, no player can get a card with his favorite number. Thus, the answer is 00.
题意:n∗kn∗k张卡片分给n个人,每人k张。第二行输入n∗kn∗k张卡片上面写的数字,第三行输入nn个人喜欢的数字,第四行输入k个数字,h[i]h[i]表示拿到ii张自己喜欢的卡片可以获得的快乐值。问所有人快乐值之和最大为多少?
题解:DP,dp[i][j],表示i个相同的数字给j个人(这j个人都喜欢这相同的数字);cnt[i]表示数字i的数量,num[j]表示喜欢j 的人数;
状态转换方程为:dp[i][j]=max(dp[i][j],dp[i-u][j-1]+w[u]);(1=<u<=k)
AC代码为:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int n,k,a[maxn],f[5005],w[15];
int cnt[maxn],num[maxn],dp[5005][521];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
memset(cnt,0,sizeof cnt);
memset(num,0,sizeof num);
cin>>n>>k;
for(int i=1;i<=n*k;i++) cin>>a[i],cnt[a[i]]++;
for(int i=1;i<=n;i++) cin>>f[i],num[f[i]]++;
for(int i=1;i<=k;i++) cin>>w[i];
for(int i=1;i<=n*k;i++)
{
dp[i][1]=w[min(i,k)];
for(int j=2;j<=n;j++)
{
for(int u=1;u<=min(i,k);u++)
dp[i][j]=max(dp[i][j],dp[i-u][j-1]+w[u]);
}
}
long long ans=0;
for(int i=1;i<maxn;i++) if(num[i]) ans+=dp[cnt[i]][num[i]];
cout<<ans<<endl;
return 0;
}
CoderForces999F-Cards and Joy的更多相关文章
- Codeforces Round #490 (Div. 3) F - Cards and Joy
F - Cards and Joy 思路:比较容易想到dp,直接dp感觉有点难,我们发现对于每一种数字要处理的情况都相同就是有 i 张牌 要给 j 个人分, 那么我们定义dp[ i ][ j ]表示 ...
- F. Cards and Joy
F. Cards and Joy 题目大意: 给你n个人,每一个人恰好选k张牌. 第一行是 n 和 k 第二行有n*k个数,代表有n*k张牌,每张牌上的数字 第三行有n个数,代表第i个人喜欢的数字 第 ...
- Cards and Joy CodeForces - 999F (贪心+set)
There are nn players sitting at the card table. Each player has a favorite number. The favorite numb ...
- Codeforces 999F Cards and Joy(二维DP)
题目链接:http://codeforces.com/problemset/problem/999/F 题目大意:有n个人,n*k张卡牌,每个人会发到k张卡牌,每个人都有一种喜欢的卡牌f[i],当一个 ...
- Codeforces Round #490 (Div. 3) :F. Cards and Joy(组合背包)
题目连接:http://codeforces.com/contest/999/problem/F 解题心得: 题意说的很复杂,就是n个人玩游戏,每个人可以得到k张卡片,每个卡片上有一个数字,每个人有一 ...
- 999F Cards and Joy
传送门 题目大意 有n个人n*m张牌,每个人分m张牌.每个人有一个自己喜欢的数值,如果他的牌中有x张数值等于这个值则他的高兴度为L[x],求怎样分配牌可以使得所有人的总高兴度最大. 分析 我们发现每一 ...
- Codeforces Round #490 (Div. 3)
感觉现在\(div3\)的题目也不错啊? 或许是我变辣鸡了吧....... 代码戳这里 A. Mishka and Contes 从两边去掉所有\(≤k\)的数,统计剩余个数即可 B. Reversi ...
- [Codeforces]Codeforces Round #490 (Div. 3)
Mishka and Contest #pragma comment(linker, "/STACK:102400000,102400000") #ifndef ONLINE_JU ...
- BZOJ 1004 【HNOI2008】 Cards
题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...
随机推荐
- 创建python的虚拟环境
为什么需要虚拟环境?如果你现在用Django 1.10.x写了个网站,然后你的领导跟你说,之前有一个旧项目是用Django 0.9开发的,让你来维护,但是Django 1.10不再兼容Django 0 ...
- ES6学习笔记01 -- 暂时性死区 ( temporal dead zone )
参考文档: let 和 const 命令 - ECMAScript6入门 暂时性死区(temporal dead zone) 理解ES6中的TDZ(暂时性死区) ES6 中 let 暂时性死区详解 ...
- VMware安装Ubuntu 16.04.4 LTS
1.下载Ubuntu镜像 https://www.ubuntu.com/download/desktop 2.创建新的虚拟机 3. 4.这里默认即可,可以不选 5. 6. 7.这里位置可以随时改 8. ...
- 后台服务器框架中的瑞士军刀——MCP
上篇介绍了一个简单的UDP服务框架,但是面对海量的请求,同步框架显然有点力不从心.于是在我接手好友系统的接口服务的时候,就采用了一个强大的异步框架——MCP框架. MCP框架是一个多进程异步框架,支持 ...
- Centos内核参数优化
关于内核参数优化 net.ipv4.tcp_max_tw_buckets = 6000 net.ipv4.ip_local_port_range = 1024 65000 net.ipv4.tcp_ ...
- 【SSM】自定义属性配置的使用
首先,建立xxx.properties 文件在resource文件夹中,此处我们自定义的配置文件是oj-config.properties 然后,在applicationContext.xml中注册这 ...
- PostGIS 查看表属性(字段、类型、是否为空)
SELECT a.attnum, a.attname AS field, t.typname AS type ...
- vue中router跳转本页刷新
问题: 导航栏的地址发生改变但是页面却不刷新 (用vue-router路由到当前页面,页面是不进行刷新的)解决: 1.); 2.location.reload() ...
- PL真有意思(六):子程序和控制抽象
前言 在之前我们把抽象定义为一种过程,程序员可以通过它将一个名字与一段可能很复杂的程序片段关联起来.抽象最大的意义就在于,我们可以从功能和用途的角度来考虑它,而不是实现. 在大多数程序设计语言中,子程 ...
- TraceID在AspNETCore日志排障中的应用
前言 .NetCore日志,相信大家多少都接触过,博客园有关 ① AspNetCore依赖注入第三方日志组件 ②第三方日志组件Nlog,Serilog 应用方法的博文层出不穷. 结合程序的部署结构 ...