压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

IHT(iterative hard thresholding )算法是压缩感知中一种非常重要的贪婪算法,它具有算法简单的有点,且易于实现,在实际中应用较多。本文给出了IHT算法的python和matlab代码(本文给出的代码未经过优化,所以重建质量不是非常好),以及完整的仿真过程。

算法流程

python代码

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)
#coding:utf-8
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为IHT算法,图像按列进行处理
# 参考文献: Carrillo R E, Polania L F, Barner K E. Iterative hard thresholding for compressed sensing
#with partially known support[C]
#//Acoustics, Speech and Signal Processing (ICASSP),
#2011 IEEE International Conference on. IEEE, 2011: 4028-4031.
#
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #导入集成库
import math # 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包 #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))#图片大小256*256 #生成高斯随机测量矩阵
sampleRate=0.7 #采样率
Phi=np.random.randn(256,256)
u, s, vh = np.linalg.svd(Phi)
Phi = u[:256*sampleRate,] #将测量矩阵正交化 #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #IHT算法函数
def cs_IHT(y,D):
K=math.floor(y.shape[0]/3) #稀疏度
result_temp=np.zeros((256)) #初始化重建信号
u=0.5 #影响因子
result=result_temp
for j in range(K): #迭代次数
x_increase=np.dot(D.T,(y-np.dot(D,result_temp))) #x=D*(y-D*y0)
result=result_temp+np.dot(x_increase,u) # x(t+1)=x(t)+D*(y-D*y0)
temp=np.fabs(result)
pos=temp.argsort()
pos=pos[::-1]#反向,得到前面L个大的位置
result[pos[K:]]=0
result_temp=result
return result #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_IHT(img_cs_1d[:,i],Theta_1d) #利用IHT算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

matlab代码

%代码在matlab2010b测试通过
function Demo_CS_IHT()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the DCT basis is selected as the sparse representation dictionary
% instead of seting the whole image as a vector, I process the image in the
% fashion of column-by-column, so as to reduce the complexity. % Author: Chengfu Huo, roy@mail.ustc.edu.cn, http://home.ustc.edu.cn/~roy
% Reference: T. Blumensath and M. Davies, “Iterative Hard Thresholding for
% Compressed Sensing,” 2008.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %------------ read in the image --------------
img=imread('lena.bmp'); % 256*256大小
img=double(img);
[height,width]=size(img);
sampleRate=0.7; %采样率 %------------ form the measurement matrix and base matrix ---------------
%Phi=randn(floor(height/3),width); % only keep one third of the original data
%Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(height/3),1]); % normalize each column Phi = orth(rand(256, 256));
Phi=Phi(1:256*sampleRate, :); mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end %--------- projection ---------
img_cs_1d=Phi*img; % treat each column as a independent signal %-------- recover using omp ------------
sparse_rec_1d=zeros(height,width);
Theta_1d=Phi*mat_dct_1d;
for i=1:width
column_rec=cs_iht(img_cs_1d(:,i),Theta_1d,height);
sparse_rec_1d(:,i)=column_rec'; % sparse representation
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; % inverse transform %------------ show the results --------------------
figure(1)
subplot(2,2,1),imagesc(img),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)));
subplot(2,2,4),imshow(uint8(img_rec_1d));
title(strcat('PSNR=',num2str(psnr),'dB')); disp('over') %************************************************************************%
function hat_x=cs_iht(y,T_Mat,m)
% y=T_Mat*x, T_Mat is n-by-m
% y - measurements
% T_Mat - combination of random matrix and sparse representation basis
% m - size of the original signal
% the sparsity is length(y)/4 hat_x_tp=zeros(m,1); % initialization with the size of original
s=floor(length(y)/4); % sparsity
u=0.5; % impact factor % T_Mat=T_Mat/sqrt(sum(sum(T_Mat.^2))); % normalizae the whole matrix for times=1:s x_increase=T_Mat'*(y-T_Mat*hat_x_tp); hat_x=hat_x_tp+u*x_increase; [val,pos]=sort((hat_x),'descend'); % why? worse performance with abs() hat_x(pos(s+1:end))=0; % thresholding, keeping the larges s elements hat_x_tp=hat_x; % update end

参考文章

1、Carrillo R E, Polania L F, Barner K E. Iterative hard thresholding for compressed sensing with partially known support[C]//Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011: 4028-4031.

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之IHT算法python实现的更多相关文章

  1. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC

    主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...

  7. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

  8. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  9. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

随机推荐

  1. Docker 开篇2 | 树莓派安装docker 续

    问题1:安装后出现错误Error! The dkms.conf for this module includes a BUILD_EXCLUSIVE directive which does not ...

  2. [LINQ2Dapper]最完整Dapper To Linq框架(一)---基础查询

    此例子是使用LINQ2Dapper封装,效率优于EntityFramwork,并且支持.NetFramework和.NetCore框架,只依赖于Dapper 支持.net framework4.5.1 ...

  3. python中的集合、元组和布尔

    #元组,元组跟列表一样,只不过列表可读可写,而元组一般用来只读,不修改#python中不允许修改元组的数据,也包括不能删除其中的元素. t1 = ('a','b','c','d','s','a') & ...

  4. 深入理解 DNS

    深入理解 DNS 简介 DNS(Domain Name System)域名系统,它是一个将域名和 IP 地址相互映射的一个分布式数据库,把容易记忆的主机名转换成主机 IP 地址. DNS使用 TCP ...

  5. 高质量App的架构设计与思考!

    最近在做一功能不大.业务也不复杂的小众App,以往做App是发现自己从来没有考虑过一些架构方面的问题,只是按照自己以往的习惯去写代码,忽略了App的设计.本次分享主要包含一些开发App的小经验和技巧, ...

  6. 开始逆向objc基础准备(一)简单认识一下arm32,以及与x86汇编指令类比

    ARM32体系中有31或33个通用寄存器,没有特定的某种态下有r0-r15一共16个寄存器,快速中断态下有另一组r8-r12备份寄存器,在用户态和系统态之外其它态下都各自有一组r13-r14备份寄存器 ...

  7. ETCD:单机单节点

    原文地址:Setting up local clusters 设置单节点集群 对于测试环境与开发环境,最快速与简单的方式是配置一个本地集群.对于生产环境,参考集群部分. 本地单节点集群 启动一个集群 ...

  8. Flex带CheckBox的Tree(修改ItemRenderer)

    此文代码参考了:http://summerofthatyear-gmail-com.iteye.com/blog/326302 在此表示感谢! 前文提到了,实现带CheckBox的Tree有两种方法: ...

  9. 2019-9-28:渗透测试,phpstudy后门,利用复现

    9月20号爆出Phpstudy存在隐藏后门,简单复现下后门效果 该文章仅供学习,利用方法来自网络文章,仅供参考 目标机:win7系统,安装phpstudy 2018版,php版本5.2或php 5.4 ...

  10. 【笔记】总结Springboot和Vue前后端分离的跨域问题

    跨域一直是个很玄学的问题,SSM的时候又得前后端一起配置,sb的时候又不用. 前端 axios普通get请求 submitForm() { var v=this; this.$axios({ meth ...