pandas 之 交叉表-透视表
import numpy as np
import pandas as pd
认识
A pivot table is a data summarization tool(数据汇总工具) frequently found in spreadsheet programs and other data analysis software(广泛应用于数据分析中). It aggregates a table of data by one or more keys, arranging the data in a rectangle(矩形) with some of the group keys along the rows and some along the columns.
Pivot tables in Python with pandas are made possible through the groupby facility(促进) described in this chapter combined with reshape operations utilizing hierarchical indexing.
DataFrame has a pivot_table method, and there is also a top-level pandas.pivot_table function. In addition to providing a convenience interface to groupby, pivot_table can add partial totals , also known as margins.
Returning to the tipping dataset, suppose you wanted to compute a table of group means(the default pivot_table aggregation type) arranged by day and smoker on the rows: (对分组计算组内平均)
tips = pd.read_csv('../examples/tips.csv')
"新增一列 tip_pct"
tips['tip_pct'] = tips['tip'] / tips['total_bill']
tips[:6]
'新增一列 tip_pct'
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| total_bill | tip | smoker | day | time | size | tip_pct | |
|---|---|---|---|---|---|---|---|
| 0 | 16.99 | 1.01 | No | Sun | Dinner | 2 | 0.059447 |
| 1 | 10.34 | 1.66 | No | Sun | Dinner | 3 | 0.160542 |
| 2 | 21.01 | 3.50 | No | Sun | Dinner | 3 | 0.166587 |
| 3 | 23.68 | 3.31 | No | Sun | Dinner | 2 | 0.139780 |
| 4 | 24.59 | 3.61 | No | Sun | Dinner | 4 | 0.146808 |
| 5 | 25.29 | 4.71 | No | Sun | Dinner | 4 | 0.186240 |
"默认的aggregation 是 mean"
tips.pivot_table(index=['day', 'smoker'])
'默认的aggregation 是 mean'
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| size | tip | tip_pct | total_bill | ||
|---|---|---|---|---|---|
| day | smoker | ||||
| Fri | No | 2.250000 | 2.812500 | 0.151650 | 18.420000 |
| Yes | 2.066667 | 2.714000 | 0.174783 | 16.813333 | |
| Sat | No | 2.555556 | 3.102889 | 0.158048 | 19.661778 |
| Yes | 2.476190 | 2.875476 | 0.147906 | 21.276667 | |
| Sun | No | 2.929825 | 3.167895 | 0.160113 | 20.506667 |
| Yes | 2.578947 | 3.516842 | 0.187250 | 24.120000 | |
| Thur | No | 2.488889 | 2.673778 | 0.160298 | 17.113111 |
| Yes | 2.352941 | 3.030000 | 0.163863 | 19.190588 |
This could have been produced with groupby directly. Now, suppose we want to aggregate only tip_pct and size, and additionally group by time. I'll put smoker in the table columns and day in the rows:
tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
columns='smoker')
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead tr th {
text-align: left;
}
.dataframe thead tr:last-of-type th {
text-align: right;
}
| size | tip_pct | ||||
|---|---|---|---|---|---|
| smoker | No | Yes | No | Yes | |
| time | day | ||||
| Dinner | Fri | 2.000000 | 2.222222 | 0.139622 | 0.165347 |
| Sat | 2.555556 | 2.476190 | 0.158048 | 0.147906 | |
| Sun | 2.929825 | 2.578947 | 0.160113 | 0.187250 | |
| Thur | 2.000000 | NaN | 0.159744 | NaN | |
| Lunch | Fri | 3.000000 | 1.833333 | 0.187735 | 0.188937 |
| Thur | 2.500000 | 2.352941 | 0.160311 | 0.163863 | |
We could augment this table to include partial totals by passing margins=True. This has the effect of adding all row and column labels, with corresponding values being the group statistics for all the data within a single tier:
tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
columns='smoker', margins=True)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead tr th {
text-align: left;
}
.dataframe thead tr:last-of-type th {
text-align: right;
}
| size | tip_pct | ||||||
|---|---|---|---|---|---|---|---|
| smoker | No | Yes | All | No | Yes | All | |
| time | day | ||||||
| Dinner | Fri | 2.000000 | 2.222222 | 2.166667 | 0.139622 | 0.165347 | 0.158916 |
| Sat | 2.555556 | 2.476190 | 2.517241 | 0.158048 | 0.147906 | 0.153152 | |
| Sun | 2.929825 | 2.578947 | 2.842105 | 0.160113 | 0.187250 | 0.166897 | |
| Thur | 2.000000 | NaN | 2.000000 | 0.159744 | NaN | 0.159744 | |
| Lunch | Fri | 3.000000 | 1.833333 | 2.000000 | 0.187735 | 0.188937 | 0.188765 |
| Thur | 2.500000 | 2.352941 | 2.459016 | 0.160311 | 0.163863 | 0.161301 | |
| All | 2.668874 | 2.408602 | 2.569672 | 0.159328 | 0.163196 | 0.160803 | |
Here, the All values are means without taking into account smoker versus non-smoker or any of the two levels of grouping on the rows.
To use a different aggregation function, pass it to aggfunc. For example, count or len will give you a cross-tabulation of group sizes:
tips.pivot_table('tip_pct', index=['time', 'smoker'],
columns='day', aggfunc=len, margins=True)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| day | Fri | Sat | Sun | Thur | All | |
|---|---|---|---|---|---|---|
| time | smoker | |||||
| Dinner | No | 3.0 | 45.0 | 57.0 | 1.0 | 106.0 |
| Yes | 9.0 | 42.0 | 19.0 | NaN | 70.0 | |
| Lunch | No | 1.0 | NaN | NaN | 44.0 | 45.0 |
| Yes | 6.0 | NaN | NaN | 17.0 | 23.0 | |
| All | 19.0 | 87.0 | 76.0 | 62.0 | 244.0 |
If some combinations are empty, you may wish to pass a fill_value
tips.pivot_table('tip_pct', index=['time', 'size', 'smoker'],
columns='day', aggfunc='mean', fill_value=0)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| day | Fri | Sat | Sun | Thur | ||
|---|---|---|---|---|---|---|
| time | size | smoker | ||||
| Dinner | 1 | No | 0.000000 | 0.137931 | 0.000000 | 0.000000 |
| Yes | 0.000000 | 0.325733 | 0.000000 | 0.000000 | ||
| 2 | No | 0.139622 | 0.162705 | 0.168859 | 0.159744 | |
| Yes | 0.171297 | 0.148668 | 0.207893 | 0.000000 | ||
| 3 | No | 0.000000 | 0.154661 | 0.152663 | 0.000000 | |
| Yes | 0.000000 | 0.144995 | 0.152660 | 0.000000 | ||
| 4 | No | 0.000000 | 0.150096 | 0.148143 | 0.000000 | |
| Yes | 0.117750 | 0.124515 | 0.193370 | 0.000000 | ||
| 5 | No | 0.000000 | 0.000000 | 0.206928 | 0.000000 | |
| Yes | 0.000000 | 0.106572 | 0.065660 | 0.000000 | ||
| 6 | No | 0.000000 | 0.000000 | 0.103799 | 0.000000 | |
| Lunch | 1 | No | 0.000000 | 0.000000 | 0.000000 | 0.181728 |
| Yes | 0.223776 | 0.000000 | 0.000000 | 0.000000 | ||
| 2 | No | 0.000000 | 0.000000 | 0.000000 | 0.166005 | |
| Yes | 0.181969 | 0.000000 | 0.000000 | 0.158843 | ||
| 3 | No | 0.187735 | 0.000000 | 0.000000 | 0.084246 | |
| Yes | 0.000000 | 0.000000 | 0.000000 | 0.204952 | ||
| 4 | No | 0.000000 | 0.000000 | 0.000000 | 0.138919 | |
| Yes | 0.000000 | 0.000000 | 0.000000 | 0.155410 | ||
| 5 | No | 0.000000 | 0.000000 | 0.000000 | 0.121389 | |
| 6 | No | 0.000000 | 0.000000 | 0.000000 | 0.173706 |
See Table 10-2 for a summary of pivot_table methods.
| function anme | Description |
|---|---|
| values | Column name or names to aggregate; 默认聚合所有的数值列 |
| index | Column names or other group keys to group on the rows of the resulting pivot table |
| columns | Column names or other group keys to group on the columns of the result pivot table |
| aggfunc | Aggregation function or list of function(默认是mean); can be any function valid in a groupby context |
| fill_value | Replace missing values in result table |
| dropna | If True, do not include columns whose entries are all NA |
| margins | Add row/column subtotals and grand total |
交叉表: Crosstab
- 是透视表的一部分, aggfunc=count而已
A cross-tabulation (or crosstab for short) is a special case of a pivot table that computes group frequencies.Here is an example:
As part of some survey analysis, we might want to summarize this data nationality and handedness. You could use pivot_table to do this, but the pandas.crosstab function can be more convenient:
pd.crosstab(data.Nationality, data.Handedness, margins=True)
The first two arguments to crosstab can each either be an array or Series or a list of arrays. As in the tips data:
"根据 day, time 对 smoker 进行统计"
pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
'根据 day, time 对 smoker 进行统计'
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| smoker | No | Yes | All | |
|---|---|---|---|---|
| time | day | |||
| Dinner | Fri | 3 | 9 | 12 |
| Sat | 45 | 42 | 87 | |
| Sun | 57 | 19 | 76 | |
| Thur | 1 | 0 | 1 | |
| Lunch | Fri | 1 | 6 | 7 |
| Thur | 44 | 17 | 61 | |
| All | 151 | 93 | 244 |
小结
Mastering pandas's data grouping tools can help both with data cleaning as well as modeling or statistical analysis work.
(熟练掌握 groupby 对 数据清洗, 建模统计等都是有认识和实操方面的帮助的.)
pandas 之 交叉表-透视表的更多相关文章
- pandas-10 pd.pivot_table()透视表功能
pandas-10 pd.pivot_table()透视表功能 和excel一样,pandas也有一个透视表的功能,具体demo如下: import numpy as np import pandas ...
- Pandas透视表和交叉表
透视表 参数名 说明 values 待聚合的列的名称.默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视表的行 columns 用于分组的列表或其他分组键,出现在结果透视表的列 ...
- pandas交叉表和透视表及案例分析
一.交叉表: 作用: 交叉表是一种用于计算分组频率的特殊透视图,对数据进行汇总 考察预测数据和正式数据的对比情况,一个作为行,一个作为列 案例: 医院预测病人病情: 真实病情如下数组(B:有病,M:没 ...
- 04. Pandas 3| 数值计算与统计、合并连接去重分组透视表文件读取
1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False) -->> axis=1是按行来 ...
- pandas_使用透视表与交叉表查看业绩汇总数据
# 使用透视表与交叉表查看业绩汇总数据 import pandas as pd import numpy as np import copy # 设置列对齐 pd.set_option("d ...
- 【转载】使用Pandas创建数据透视表
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...
- Pandas透视表(pivot_table)详解
介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table.虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容 ...
- pandas实现excel中的数据透视表和Vlookup函数功能
在孩子王实习中做的一个小工作,方便整理数据. 目前这几行代码是实现了一个数据透视表和匹配的功能,但是将做好的结果写入了不同的excel中, 如何实现将结果连续保存到同一个Excel的同一个工作表中?还 ...
- python pandas使用数据透视表
1) 官网啰嗦这一堆, pandas.pivot_table函数中包含四个主要的变量,以及一些可选择使用的参数.四个主要的变量分别是数据源data,行索引index,列columns,和数值value ...
随机推荐
- [日常] lscpu查看cpu的详细信息
查看自己电脑的cpu的详细信息 root@tao-PC:/home/tao# lscpu Architecture: x86_64 CPU op-mode(s): -bit, -bit Byte Or ...
- Jetbrain系列编辑器设置忽略目录(node_moudles)
使用Vue 或React开发,或者nodejs开发,用Idea/Webstrom 打开项目的时候,Updating Indexes到node_moudles目录的时候 会很慢很慢很慢.... 可以设置 ...
- vue项目关闭eslint校验
[前言] eslint是一个JavaScript的校验插件,通常用来校验语法或代码的书写风格.这篇文章主要介绍了vue项目关闭eslint校验,需要的朋友可以参考下 [主体] 简介eslint esl ...
- IntelliJ IDEA安装与破解教程(一)
官网地址:https://www.jetbrains.com/idea/ IntelliJ IDEA分为:旗舰版(Ultimate).社区版(Community) 旗舰版是收费的,社区版则是免费的.旗 ...
- 更换github账号后,push被旧账号阻止
和网上多数的教程不同,我是需要直接更换账号.切换后push一直被阻止.解决后记录下办法 remote: Permission to new-name/practice.git denied to ol ...
- Python __slots__
Python 类的特殊变量:__slots__ 使用 __slots__ 后,类中 __weakref__ 和 __dict__ 消失,同时阻止动态属性绑定 由于 __dict__ 记录着类中所有的属 ...
- 树莓派4b+linux
用Win32DiskImager烧录系统 先在boot根目录下新建ssh空文件夹来开启ssh功能,否则ssh是关闭的,用putty一直连不上,显示拒绝连接 1.联网: 初次 (实践证明:直接在sd卡根 ...
- QBXT模拟赛2
总结 期望得分:\(100 + 40 + 0 = 140\) 实际得分:\(0 + 0 + 0 = 0\) 鬼知道为什么我代码没有交上..自测\(10 + 50 + 0\)--这是心态爆炸的一场考试 ...
- [CEOI2019]Cubeword(暴力)
没错,标签就是暴力. 首先发现棱上的所有词长度都相等,枚举长度 \(len\). 然后发现这些词中只有第一个字符和最后一个字符比较重要(只有这两个位置会与别的串衔接,中间的是啥无所谓). 令 \(cn ...
- 在Ubuntu18.04.2LTS上安装视频播放器smplayer/vlc
在Ubuntu18.04.2LTS上安装视频播放器smplayer/vlc 一.前言 在Ubuntu上的视频播放器质量很差,没有解码器,非常的不方便,于是我们需要手动去安装适合我们的播放器,比如smp ...