BZOJ3170

题意:

  有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1。现在N个松鼠要走到一个松鼠家去,求走过的最短距离。

n <= 1e5;

思路:

  题意描述的是切比雪夫距离,就是两点之间的距离为max(dx,dy)。要求所有点的话,用曼哈顿距离配上前缀和能比较快得求出来。

  所以要把切比雪夫距离转化为曼哈顿距离。

  曼哈顿距离通过对x,y坐标分别排序求前缀和,可以O(n)得出所有点的曼哈顿距离前缀和。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;
typedef pair<ll,int>pli;
//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n'
//#define R register
#define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/ const int maxn = 1e5+;
struct node
{
ll x,y;
int id;
}p[maxn]; bool cmpx(node a, node b){
return a.x < b.x;
} bool cmpy(node a,node b){
return a.y < b.y;
}
ll sum[maxn],sx[maxn],sy[maxn];
int main(){
int n;
scanf("%d", &n);
for(int i=; i<=n; i++){
ll x,y;
scanf("%lld%lld", &x, &y);
p[i].x = x+y;
p[i].y = x-y;
p[i].id = i;
} sort(p+,p++n,cmpx); for(int i=; i<=n; i++) sx[i] = sx[i-] + p[i].x;
for(int i= ;i<=n; i++){ sum[p[i].id] = p[i].x*(i-) - sx[i-] + sx[n] - sx[i] - p[i].x*(n-i);
} sort(p+,p++n,cmpy); for(int i=; i<=n; i++) sy[i] = sy[i-] + p[i].y; ll ans = inff; for(int i= ;i<=n; i++){ ll tmp = p[i].y*(i-) - sy[i-] + sy[n] - sy[i] - p[i].y*(n-i);
ans = min(ans, sum[p[i].id] + tmp);
}
printf("%lld\n", ans/);
return ;
}

BZOJ3170 [Tjoi2013]松鼠聚会 切比雪夫距离 - 曼哈顿距离 - 前缀和的更多相关文章

  1. BZOJ3170: [Tjoi2013]松鼠聚会(切比雪夫距离转曼哈顿距离)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 803[Submit][Status][Discuss] Descripti ...

  2. Bzoj3170: [Tjoi2013]松鼠聚会 (切比雪夫距离)

    题目链接 显然,题目要求我们求切比雪夫距离,不会的可以去看一下attack的博客. 考虑枚举所有的点 转换为曼哈顿距离后. 那么对于这个点的路程和是. \[\sum_{i=1}^n | x_i - x ...

  3. BZOJ3170: [Tjoi2013]松鼠聚会

    [传送门:BZOJ3170] 简要题意: 给出n个点的坐标,规定两个点的距离=max(|x1-x2|,|y1-y2|) 要求选出一个点,使得这个点到所有点的距离和最小 题解: 切比雪夫转换例题 将一个 ...

  4. BZOJ.3170.[TJOI2013]松鼠聚会(切比雪夫距离转曼哈顿距离)

    题目链接 将原坐标系每个点的坐标\((x,y)\)变为\((x+y,x-y)\),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离. 反过来,将原坐标系每个点的坐标\((x,y)\)变为\((\f ...

  5. BZOJ3170: [Tjoi2013]松鼠聚会 - 暴力

    描述 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 题解 简直 ...

  6. BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和

    BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和 题意:有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点, ...

  7. [TJOI2013]松鼠聚会 曼哈顿距离

    [TJOI2013]松鼠聚会 luogu P3964 首先容易得到两点间距离是\(max(|x_1-x_2|, |y_1-y_2|)\)(即切比雪夫距离) 然后有个套路:原\((x,y)\)求曼哈顿距 ...

  8. 【bzoj3170】[Tjoi2013]松鼠聚会

    3170: [Tjoi2013]松鼠聚会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1670  Solved: 885[Submit][Statu ...

  9. Hdu 4312-Meeting point-2 切比雪夫距离,曼哈顿距离,前缀和

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=4312 Meeting point-2 Time Limit: 2000/1000 MS (Java/Ot ...

随机推荐

  1. 从后端到前端之Vue(五)小试路由

    一开始我还以为vue的路由只能用在工程化的项目里面呢,然后研究了一下才发现,在脚本化里面也是可以用的.其实呢不管在哪里用,把原理研究明白就对了. 一. 官网demo 这里不得不吐槽一下官网,写的不清不 ...

  2. SpringBoot Kafka 整合使用

    前提 假设你了解过 SpringBoot 和 Kafka. 1.SpringBoot 如果对 SpringBoot 不了解的话,建议去看看 DD 大佬 和 纯洁的微笑 的系列博客. 2.Kafka K ...

  3. Chrome 使用 Evernote 插件

    Chrome 插件不能登印象笔记进行裁剪,被困扰有段时间了.昨天偶然在知乎上找到了解决方法: 链接:https://www.zhihu.com/question/20340803/answer/291 ...

  4. 实用小工具推荐 OpenWrite

    [实用小工具推荐]给技术同学们推荐一款比较好用的工具,可以实现一稿多发,主流的技术渠道基本涵盖了:https://www.openwrite.cn/ 因为工作的关系,认识了很多做技术公众号的小伙伴,同 ...

  5. NDK jni mk文件 so文件 巴啦啦 初体验

    概念JNI(Java Native Interface,Java本地接口),实现了Java和其他语言的交互(主要是C/C++),如:Java程序通过JNI调用C/C++编写的在Windows上运行的D ...

  6. GC是什么?为什么我们要去使用它

    GC(Garbage Collection)是各大语言的宠儿,也是计算机科学领域里很热门的一个话题.最早在JVM中有看过这个算法,后来发现即使是js这种脚本语言也是有GC的.单纯就JVM来说的话,GC ...

  7. Java匹马行天下之J2EE框架开发——Spring—>用IDEA开发Spring程序(01)

    一.心动不如行动 一.创建项目 *注:在IDEA中我创建的Maven项目,不了解Maven的朋友可以看我之前的博客“我们一起走进Maven——知己知彼”,了解Maven后可以看我之前的博客“Maven ...

  8. SpringBoot 2 HTTP转HTTPS

    @Bean public TomcatServletWebServerFactory servletContainer() { TomcatServletWebServerFactory tomcat ...

  9. Selenium+java - 截图操作

    写在前面 自动化测试过程中,运行失败截图可以很好的帮我们定位问题,因此,截图操作也是我们自动化测试中的一个重要环节. 截图方法 1.通过截图类TakeScreenshout实现截图 特点:截取浏览器窗 ...

  10. 从零开发一款自己的小程序UI组件库(二)

    写在前面:从零开发一款自己的小程序UI组件库(一) 上节我们讲到初始化组件库模板.模板文件概述.模板上传npm以及npm包文件下载至本地并运用到项目.这节我们继续,内容主要有基础UI组件库的搭建(bu ...