Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp
F. Daniel and Spring Cleaning
While doing some spring cleaning, Daniel found an old calculator that he loves so much. However, it seems like it is broken. When he tries to compute 1+3 using the calculator, he gets 2 instead of 4. But when he tries computing 1+4, he gets the correct answer, 5. Puzzled by this mystery, he opened up his calculator and found the answer to the riddle: the full adders became half adders!
So, when he tries to compute the sum a+b using the calculator, he instead gets the xorsum a⊕b (read the definition by the link: https://en.wikipedia.org/wiki/Exclusive_or).
As he saw earlier, the calculator sometimes gives the correct answer. And so, he wonders, given integers l and r, how many pairs of integers (a,b) satisfy the following conditions:
a+b=a⊕b
l≤a≤r
l≤b≤r
However, Daniel the Barman is going to the bar and will return in two hours. He tells you to solve the problem before he returns, or else you will have to enjoy being blocked.
Input
The first line contains a single integer t (1≤t≤100) — the number of testcases.
Then, t lines follow, each containing two space-separated integers l and r (0≤l≤r≤109).
Output
Print t integers, the i-th integer should be the answer to the i-th testcase.
Example
input
3
1 4
323 323
1 1000000
output
8
0
3439863766
Note
a⊕b denotes the bitwise XOR of a and b.
For the first testcase, the pairs are: (1,2), (1,4), (2,1), (2,4), (3,4), (4,1), (4,2), and (4,3).
题意
给你l,r;问你[l,r]中有多少对数满足a+b = a^b
题解
a+b=a^b其实就是求二进制中每一位都不同的对数。
首先考虑容斥,假设我们知道solve(l,r)就是求[1,l],[1,r]中有多少对答案。
那么最终答案就是solve(r,r)-2solve(l-1,r)+solve(l-1,l-1)
然后这个数位dp,我们正常去跑就行。dp[i][sa][sb]表示考虑第i位,a是否到达的最大值,b是否到达了最大值。然后枚举即可。
代码
#include<bits/stdc++.h>
using namespace std;
long long dp[35][2][2];
long long ans(int l,int r,int x,int sa,int sb){
if(x==-1)return 1;
if(dp[x][sa][sb]!=-1)return dp[x][sa][sb];
int ma=1,mb=1;
if(sa)ma=(l>>x)&1;
if(sb)mb=(r>>x)&1;
dp[x][sa][sb]=0;
for(int i=0;i<=ma;i++){
for(int j=0;j<=mb;j++){
if((i&j)==0){
dp[x][sa][sb]+=ans(l,r,x-1,sa&(i==ma),sb&(j==mb));
}
}
}
return dp[x][sa][sb];
}
long long ans(int l,int r){
if(l<0||r<0)return 0;
memset(dp,-1,sizeof(dp));
return ans(l,r,30,1,1);
}
void solve(){
int l,r;
scanf("%d%d",&l,&r);
cout<<ans(r,r)-2*ans(l-1,r)+ans(l-1,l-1)<<endl;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
solve();
}
}
Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp的更多相关文章
- Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)
F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...
- Codeforces Round #587 (Div. 3) F. Wi-Fi(单调队列优化DP)
题目:https://codeforces.com/contest/1216/problem/F 题意:一排有n个位置,我要让所有点都能联网,我有两种方式联网,第一种,我直接让当前点联网,花费为i,第 ...
- Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索
题目链接: http://codeforces.com/problemset/problem/258/B B. Little Elephant and Elections time limit per ...
- Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)
yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...
- Codeforces Round #157 (Div. 2) D. Little Elephant and Elections(数位DP+枚举)
数位DP部分,不是很难.DP[i][j]前i位j个幸运数的个数.枚举写的有点搓... #include <cstdio> #include <cstring> using na ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)
D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...
- Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)
题目传送门 B. Perfect Number time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #486 (Div. 3) F. Rain and Umbrellas
Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...
随机推荐
- MySQL Aborted_clients和 Aborted_connects状态变量详解
Aborted_clients和 Aborted_connects状态变量详解 By:授客 QQ:1033553122 状态变量定义 Aborted_clients 因客户端消亡时未恰当的关闭连接 ...
- Git 在同一台机器上配置多个Git帐号
在同一台机器上配置多个Git帐号 By:授客 QQ:1033553122 实践环境 win10 Git-2.21.0-64-bit.exe TortoiseGit-2.8.0.0-64bit.msi ...
- cesium 雷达扫描(附源码下载)
前言 cesium 官网的api文档介绍地址cesium官网api,里面详细的介绍 cesium 各个类的介绍,还有就是在线例子:cesium 官网在线例子,这个也是学习 cesium 的好素材. 内 ...
- react-router刷新页面Cannot GET 问题
最近在做项目的时候遇到了如下错误 并在控制台看到了如下的报错 我先是按照控制台的错误搜索,得出的结果都是对meta头部进行设置,允许资源请求,但是问题依然没有解决,偶然间改变了想法,会不会是路由的问题 ...
- source insight 3 常用设置
总结了一些source insight的一些常用设置,这些设置需求因人而异,自己用的顺手的才是最好的. 1.括号配对高亮“在前括号左侧,后括号左侧”双击鼠标左键,可以选定匹配括号和其中内容(<& ...
- LeetCode刷题191127
数据库: 1179 部门表 Department: +---------------+---------+| Column Name | Type |+---------------+-------- ...
- 使OrangePi Zero+支持U盘启动
以下步骤均在Armbian系统中完成 一.无内存卡启动 1.使用armbian-config启动SPI 输入sudo armbian-config→选中System并回车→选中Hardware并回车→ ...
- 【使用篇二】Lombok的介绍与使用(16)
Lombok通过简单注解来实现精简代码来达到消除冗长代码的目的.它能够提高编码效率.使代码更简洁.消除冗长代码.避免修改字段名时忘记修改方法名. 一.Lombok注解 Lombok主要常用的注解有: ...
- Goland安装
Goland安装 http://c.biancheng.net/view/6124.html
- VMware® Workstation 15 Pro 最新版软件安装教程
VMware 15 Pro下载地址: https://pan.baidu.com/s/1ILY2PTqB-BaJMn2hbKO4CA 提取码:vebd 如有问题咨询QQ:2217084817 VMwa ...