1.numpy 

  在python中,数据分析可以使用numpy。

  首先可以安装ipython解释器,在终端,代码变得可视化,界面有高亮显示:

pip Install ipython

  除了可以在终端编程之外,还可以安装anaconda软件,该软件包含了数据分析的基础包,包括jupyter等和其他可是换数据分析包,可以快速的管理数据。

  jupyter notebook看上去就像在终端编写代码一样,但是可以保存数据结果,有利于数据分析。

  安装anaconda软件在官方点击下载,下载时记得将默认python3.7编辑器取消勾选。

  jupyter的快捷键使用:

  1. 运行当前代码并选中下一个单元格 shift+enter

  2. 运行当前的单元格 crtl + enter

  当编辑器出现绿色时,为编辑模式,当出现蓝色时,为 命令行模式。

  3. 在单元格的上方添加一个单元格 , 按esc进入命令行模式,接下来按 a (above) 添加

  4. 在单元格的上方添加一个单元格 , 按esc进入命令行模式,接下来按 b (below) 添加

  5. 删除一个单元格, 按esc进入命令行模式, 接下来,按 dd(delete) 删除

  6. 代码和markdown的切换, 按esc进入命令行模式, 接下来,按 m 切换

二。numpy的使用

  首先使用pip进行安装:

pip install numpy

  再对其进行导入,默认起别名为np

import numpy as np

  numpy提供了比python还方便的一些处理数据方面的方法:

  1.array

  数组的创建array([1,2,3])

  创建一个np格式的数组,这些数组可以直接相乘,得到一个数组:

import numpy as np

l1 =np.array([1,2,3])
l2 = np.array([4,5,6])
l1*2
array([2, 4, 6])

  T:   数组的转置(对高维数组)

  dtype     数组元素的数据类型

  size   数组元素的个数

  ndim   数组的维数

  shape   数组的维度大小(以元组的形式)

  数据类型:

类型 描述  
布尔型 bool_  
整型 int_ int8 int16 int32 int 64  
无符号整型 uint8 uint16 uint32 uint64  
浮点型 float_ float16 float32 float64  
复数型 complex_ complex64 complex128

  无符号类型只能用来存储正数

  astype()方法可以修改数组的数据类型

  array的搭建:

方法 描述  
array() 将列表转换为数组,可选择显式指定dtype  
arange() range的numpy版,支持浮点数  
linspace() 类似arange(),第三个参数为数组长度  
zeros() 根据指定形状和dtype创建全0数组  
ones() 根据指定形状和dtype创建全1数组  
empty() 根据指定形状和dtype创建空数组(随机值)  
eye() 根据指定边长和dtype创建单位矩阵
1、arange():
np.arange(1.2,10,0.4)
执行结果:
array([1.2, 1.6, 2. , 2.4, 2.8, 3.2, 3.6, 4. , 4.4, 4.8, 5.2, 5.6, 6. ,
6.4, 6.8, 7.2, 7.6, 8. , 8.4, 8.8, 9.2, 9.6])
# 在进行数据分析的时候通常我们遇到小数的机会远远大于遇到整数的机会,这个方法与Python内置的range的使用方法一样
-----------------------------------------------------------------
2、linspace()
np.linspace(1,10,20)
执行结果:
array([ 1. , 1.47368421, 1.94736842, 2.42105263, 2.89473684,
3.36842105, 3.84210526, 4.31578947, 4.78947368, 5.26315789,
5.73684211, 6.21052632, 6.68421053, 7.15789474, 7.63157895,
8.10526316, 8.57894737, 9.05263158, 9.52631579, 10. ])
# 这个方法与arange有一些区别,arange是顾头不顾尾,而这个方法是顾头又顾尾,在1到10之间生成的二十个数每个数字之间的距离相等的,前后两个数做减法肯定相等
----------------------------------------------------------------
3、zeros()
np.zeros((3,4))
执行结果:
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
# 会用0生成三行四列的一个多维数组
---------------------------------------------------------------------
4、ones()
np.ones((3,4))
执行结果:
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
# 会用1生成三行四列的一个多维数组
------------------------------------------------------------------------
5、empty()
np.empty(10)
执行结果:
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
# 这个方法只申请内存,不给它赋值
-----------------------------------------------------------------------
6、eye()
np.eye(5)
执行结果:
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])

测试

  linspace中有一个参数位endpoint=False,标记当前数组中最后一个数是否参数与切分。

  np.empty([2,2])

  建立一个2*2的二维数组。

day98_12_2 数据分析工具包。的更多相关文章

  1. Python之数据分析工具包介绍以及安装【入门必学】

    前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 首先我们来看 Mac版 按照需求大家依次安装,如果你还没学到数据分析,建议你 ...

  2. python数据分析工具包(3)——matplotlib(一)

    前两篇文章简单介绍了科学计算Numpy的一些常用方法,还有一些其他内容,会在后面的实例中学习.下面介绍另一个模块--Matplotlib. Matplotlib是一个Python 2D绘图库,试图让复 ...

  3. python数据分析工具包(2)——Numpy(二)

    上一篇文章简单地介绍了numpy的一些基本数据类型,以及生成数组和矩阵的操作.下面我们来看一下矩阵的基本运算.在线性代数中,常见的矩阵运算包括,计算行列式.求逆矩阵.矩阵的秩等.下面我们来一一实现. ...

  4. python数据分析工具包(1)——Numpy(一)

    在本科阶段,我们常用的科学计算工具是MATLAB.下面介绍python的一个非常好用而且功能强大的科学计算库--Numpy. a powerful N-dimensional array object ...

  5. 媲美pandas的数据分析工具包Datatable

    1 前言 data.table 是 R 中一个非常通用和高性能的包,使用简单.方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Biocondu ...

  6. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  8. Pandas基础学习与Spark Python初探

    摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...

  9. 论文总结(Frequent Itemsets Mining With Differential Privacy Over Large-Scale Data)

    一.论文目标:将差分隐私和频繁项集挖掘结合,主要针对大规模数据. 二.论文的整体思路: 1)预处理阶段: 对于大的数据集,进行采样得到采样数据集并计算频繁项集,估计样本数据集最大长度限制,然后再缩小源 ...

随机推荐

  1. ARTS-S golang goroutines and channels(二)

    向tcp服务端发消息 package main import ( "io" "log" "net" "os" ) fun ...

  2. 模拟摄像头,AV视频信号线解码,PAL制 NTSC,输入解码显示,终于搞定,记录下!

    模拟摄像头,AV视频信号线解码,PAL制 NTSC,输入解码显示,终于搞定,记录下! 咱们常用的摄像头,监控等,大多数都是AV信号,国内制式都是PAL,采用同轴,传输,这样的好处在于,传输距离可以很长 ...

  3. THREE.js 笔记

    1.加载3d模型,obj格式,方式一: 加载obj,自行指定material贴图:方式二: 同时加载obj和mtl,此时为了正确加载贴图,最好指定统一的baseUrl: 2.canvas.toData ...

  4. 每周一练 之 数据结构与算法(Stack)

    最近公司内部在开始做前端技术的技术分享,每周一个主题的 每周一练,以基础知识为主,感觉挺棒的,跟着团队的大佬们学习和复习一些知识,新人也可以多学习一些知识,也把团队内部学习氛围营造起来. 我接下来会开 ...

  5. 一文搞清楚Minor GC、Major GC 、Full GC 之间的关系

    前言 文章要求读者熟悉 JVM 内置的通用垃圾回收原则.堆内存划分为 Eden.Survivor 和 Tenured/Old 空间,代假设和其他不同的 GC 算法超出了本文讨论的范围. Minor G ...

  6. 【玩转SpringBoot】看似复杂的Environment其实很简单

    喜欢写代码,讨厌配环境 我相信这十个字的小标题代表了大多数码农的心声. 十年前读大学时,学校开设了C语言还有C++.但是学习这两种语言,对于新手来说非常没有成就感. 于是我就在校门口买个光盘,装个VS ...

  7. tune kubernetes eviction parameter

    Highlight 本文会介绍kubernetes中关于集群驱逐的相关参数, 合理设置驱逐速率的考虑因素, 但是不会涉及node层面资源的驱逐阈值的设置. Basic 在kubernetes中, 如果 ...

  8. Python基础-day01-8

    变量的基本使用 程序就是用来处理数据的,而变量就是用来存储数据的 目标 变量定义 变量的类型 变量的命名 01. 变量定义 在 Python 中,每个变量 在使用前都必须赋值,变量 赋值以后 该变量 ...

  9. 在Windows10中安装与配置Nginx

    一.使用环境: Windows 10 1909 nginx 1.16.1 二.安装与配置: 1. 打开链接,http://nginx.org/en/download.html 下载稳定版本nginx ...

  10. 分布式全文搜索引擎ElasticSearch—超详细

    1 ElasticSearch 1.1 ES的概念和特点 ES:全文检索的框架,专门做搜索,支持分布式.集群.封装的Lucene. 特点: 原生的Lucene使用的不足,优化了Lucene的调用方式 ...