OpenCV2简单的特征匹配
特征的匹配大致可以分为3个步骤:
- 特征的提取
- 计算特征向量
- 特征匹配
对于3个步骤,在OpenCV2中都进行了封装。所有的特征提取方法都实现FeatureDetector接口,DescriptorExtractor接口则封装了对特征向量(特征描述符)的提取,而所有特征向量的匹配都继承了DescriptorMatcher接口。
简单的特征匹配
int main()
{
const string imgName1 = "x://image//01.jpg";
const string imgName2 = "x://image//02.jpg"; Mat img1 = imread(imgName1);
Mat img2 = imread(imgName2); if (!img1.data || !img2.data)
return -1; //step1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector(minHessian); vector<KeyPoint> keypoints1, keypoints2; detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2); //step2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2); //step3:Matching descriptor vectors with a brute force matcher
BFMatcher matcher(NORM_L2);
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2,matches); //Draw matches
Mat imgMatches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, imgMatches); namedWindow("Matches");
imshow("Matches", imgMatches); waitKey(); return 0;
}
- 实例化了一个特征提取器SurfFeatureDetector,其构造函数参数(minHessian)用来平衡提取到的特征点的数量和特征提取的稳定性的,对于不同的特征提取器改参数具有不同的含义和取值范围。
- 对得到的特征点提取特征向量(特征描述符)
- 匹配,上面代码使用了暴力匹配的方法,最后的匹配结果保存在vector<DMatch>中。
DMatch用来保存匹配后的结果
struct DMatch
{ //三个构造函数
DMatch() :
queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(std::numeric_limits<float>::max()) {}
DMatch(int _queryIdx, int _trainIdx, float _distance) :
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}
int queryIdx; //此匹配对应的查询图像的特征描述子索引
int trainIdx; //此匹配对应的训练(模板)图像的特征描述子索引
int imgIdx; //训练图像的索引(若有多个)
float distance; //两个特征向量之间的欧氏距离,越小表明匹配度越高。
bool operator < (const DMatch &m) const;
};
然后使用drawMatches方法可以匹配后的结构保存为Mat
OpenCV2简单的特征匹配的更多相关文章
- OpenCV2:特征匹配及其优化
在OpenCV2简单的特征匹配中对使用OpenCV2进行特征匹配的步骤做了一个简单的介绍,其匹配出的结果是非常粗糙的,在这篇文章中对使用OpenCV2进行匹配的细化做一个简单的总结.主要包括以下几个内 ...
- OpenCV探索之路(二十三):特征检测和特征匹配方法汇总
一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要. ...
- opencv学习之路(34)、SIFT特征匹配(二)
一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree ...
- 利用SIFT进行特征匹配
SIFT算法是一种基于尺度空间的算法.利用SIFT提取出的特征点对旋转.尺度变化.亮度变化具有不变性,对视角变化.仿射变换.噪声也有一定的稳定性. SIFT实现特征的匹配主要包括四个步骤: 提取特征点 ...
- OpenCV-Python sift/surf特征匹配与显示
import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 ...
- OpenCV-Python 特征匹配 | 四十四
目标 在本章中, 我们将看到如何将一个图像中的特征与其他图像进行匹配. 我们将在OpenCV中使用Brute-Force匹配器和FLANN匹配器 Brute-Force匹配器的基础 蛮力匹配器很简单. ...
- OpenCV 之 特征匹配
OpenCV 中有两种特征匹配方法:暴力匹配 (Brute force matching) 和 最近邻匹配 (Nearest Neighbors matching) 它们都继承自 Descriptor ...
- 特征提取(Detect)、特征描述(Descriptor)、特征匹配(Match)的通俗解释
特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式 ...
- (三)ORB特征匹配
ORBSLAM2匹配方法流程 在基于特征点的视觉SLAM系统中,特征匹配是数据关联最重要的方法.特征匹配为后端优化提供初值信息,也为前端提供较好的里程计信息,可见,若特征匹配出现问题,则整个视觉SLA ...
随机推荐
- JQuery的父、子、兄弟节点查找方法
jQuery.parent(expr) //找父元素 jQuery.parents(expr) //找到所有祖先元素,不限于父元素 jQuery.children ...
- CSS篇之动画(2)
animation-name(自定义动画) name为动画名称.不要用中文,尽量用与动画相关的名称.元素所应用的动画名称,必须与规则@keyframes配合使用,因为动画名称由@keyframes定义 ...
- Eclipse自动补全设置
如果你用过Visual Studio的自动补全功能后,再来用eclipse的自动补全功能,相信大家会有些许失望. 但是eclipse其实是非常强大的,eclipse的自动补全没有VS那么好是因为ecl ...
- ABP理论学习之导航(Navigation)
返回总目录 本篇目录 创建菜单 注册导航提供者 展示菜单 每一个web应用在页面之间都有一些要导航的菜单.ABP提供了公用的基础设施来创建菜单并将菜单展示给用户. 创建菜单 一个应用可能由不同的模块组 ...
- 可在广域网部署运行的QQ高仿版 -- GGTalk总览
(最新版本:V5.5,2016.12.06 增加对MySQL数据库的支持.) (android移动端:2015.09.24 最初发布 ,2016.11.25 最后更新) GGTalk(简称GG)是 ...
- 【CSS3进阶】酷炫的3D旋转透视
之前学习 react+webpack ,偶然路过 webpack 官网 ,看到顶部的 LOGO ,就很感兴趣. 最近觉得自己 CSS3 过于薄弱,想着深入学习一番,遂以这个 LOGO 为切入口,好好研 ...
- [Voice communications] 音量的控制
改变音频的音量是音频处理中最基础的部分,我们可以利用 GainNode 来构建 Mixers 的结构块.GainNode 的接口是很简单的: interface GainNode : AudioNod ...
- Btree 索引
Btree 索引 索引是帮助数据库高效获取数据的一种数据结构,通过提取句子主干,就可以得到索引的本质. m-way查找树 如果想了解Btree,需要首先了解m-way数据结构. m-way查找树是是一 ...
- springboot之filter/listener/servlet
简介 SpringBoot可以简化开发流程,但是在其中如何使用传统的J2EE servlet/listener/filter呢 @Bean配置 在Configuration类中加入filter和ser ...
- Atitit webservice的发现机制 discover机制
Atitit webservice的发现机制 discover机制 1.1. Ws disconvert 的组播地址和端口就是37021 1.2. Ws disconvert的发现机制建立在udp组播 ...