A本来想改到q<1e5,让你们预处理的,然后想了哈作为个逆元模板题吧= =,做不出来自行反思。

B贴个题面

因为只有一次机会,那么也就是两点分布期望E = p了,先说说大家的做法,先求出每个n的逆元保存,然后因为最大只会取到1e6,所以对0-1e6跑一遍每个数的倍数个数。复杂度O(N1/3),代码如下

 #include <iostream>
using namespace std;
typedef long long ll;
const int maxn = ;
ll sum[maxn+];
ll sqr3(ll n){
int l=,r=maxn+;
while(l+<r){
ll mid = (l+r)>>;
if(mid*mid*mid>n)
r=mid;
else l=mid;
}
return l;
}
void exgcd(const ll a, const ll b, ll &g, ll &x, ll &y) {
if (!b) g = a, x = , y = ;
else exgcd(b, a % b, g, y, x), y -= x * (a / b);
} ll inv(const ll num,const ll MOD) {
ll g, x, y;
exgcd(num, MOD, g, x, y);
return ((x % MOD) + MOD) % MOD;
}
ll fast_mult(ll x,ll y,ll mod) {
ll tmp=(x*y-(ll)((long double)x/mod*y+1.0e-8)*mod);
return tmp< ? tmp+mod : tmp;
}
int main() {
for(ll i=;i<=maxn;i++){
sum[i]=sum[i-]+((i+)*(i+)*(i+)-)/i-(i*i*i-)/i;
}
int T;
cin>>T;
while(T--){
ll n,mod;
cin>>n>>mod;
ll temp=sqr3(n);
ll ans=sum[temp-]+n/temp-(temp*temp*temp-)/temp;
ans=fast_mult(ans%mod,inv(n,mod)%mod,mod);
cout<<ans<<endl;
}
return ;
}

然后我的做法是

这里对每一步做一个解释 = =,大佬可以略过,[S]代表艾弗森约定,就是S为真则值为1,否则值为0。

对于第一个等号,就是求这些赢点的个数和。

对于第二个等号,用x来代表k的立方根的底。

对于第三个等号,第一个艾弗森约定应该不难理解,底肯定会小于等于原值。

对于第四个等号,这里第一个和式是处理边界,这里x=N的立方根的底(写错了,懒得重新改了)。这部就是把边界单独处理了。

对于第五个等号,讨论y的取值。

对于第六个等号,换底,然后是对y求和.

后面的同上,讨论取值求和。

最后就可以求得一个公式,因为要求立方根的底,建议用牛顿迭代求解。

最终的复杂度就是O(QlogN)。代码如下

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int q;
ll n,Mod,w;
double newton(double x){
double x1, x2;
if (x == 0.0) return 0.0;
x1 = x;
x2 = (2.0 * x1 + x / (x1 * x1)) / 3.0;
while (fabs((x2 - x1) / x1) >= 1E-) {
x1 = x2;
x2 = (2.0 * x1 + x / (x1 * x1)) / 3.0;
}
return x2;
} void extgcd(ll a,ll b,ll& x,ll& y){
if(!b){
x = ;
y = ;
return ;
}
extgcd(b,a%b,y,x);
y -= x*(a/b);
} ll inverse(ll a,ll n){
ll x,y;
extgcd(a,n,x,y);
return (x+n)%n;
} ll qmul(ll a,ll b) {
ll ans = ;
while (b) {
if (b&) {
ans = (ans+a)%Mod;
}
a = (a+a)%Mod;
b >>= ;
}
return ans;
} void solve() {
cin >> n >> Mod;
ll k = newton(n);
ll w = n/k - ;
if (k&) {
w += k*k/ + *k/ + ;
} else {
w += k/*k + k/*;
}
//cout << k << ' ' << w << endl;
ll ans = qmul(w%Mod,inverse(n,Mod));
cout << ans << endl;
} int main() {
ios_base::sync_with_stdio();
cin >> q;
while (q--) {
solve();
}
return ;
}

太伤心了= =,被离线算法吊打。

FJUT2019暑假周赛三部分题解的更多相关文章

  1. FJUT2019暑假周赛一题解

    A.排队问题*-* 题意就是有长度为L的序列,每位的取值可以是'f'或者'm',问不包含'fff'和'fmf'的个数. 打表找规律 不难找出递推公式为F[n] = F[n-1] + F[n-3] + ...

  2. SICP第三章题解

    目录 SICP第三章题解 ex3-17 ex3-18 ex3-19 队列 ex3-21 ex3-22 ex3-24 ex3-25 3.4 并发:时间是一个本质问题 ex3-38 3.4.2 控制并发的 ...

  3. Codeforces Round #524 (Div. 2)(前三题题解)

    这场比赛手速场+数学场,像我这样读题都读不大懂的蒟蒻表示呵呵呵. 第四题搞了半天,大概想出来了,但来不及(中途家里网炸了)查错,于是我交了两次丢了100分.幸亏这次没有掉rating. 比赛传送门:h ...

  4. Lyft Level 5 Challenge 2018 - Final Round (Open Div. 2) (前三题题解)

    这场比赛好毒瘤哇,看第四题好像是中国人出的,怕不是dllxl出的. 第四道什么鬼,互动题不说,花了四十五分钟看懂题目,都想砸电脑了.然后发现不会,互动题从来没做过. 不过这次新号上蓝名了(我才不告诉你 ...

  5. FJUT2019暑假第二次周赛题解

    A 服务器维护 题目大意: 给出时间段[S,E],这段时间需要人维护服务器,给出n个小时间段[ai,bi],代表每个人会维护的时间段,每个人维护这段时间有一个花费,现在问题就是维护服务器[S,E]这段 ...

  6. 暑假训练round 3 题解

    今天做题运气出奇的好,除了几处小错误调试之后忘记改掉了……最后还AK了……虽然题目不难,学长也说是福利局,但是对个人的鼓励作用还是挺大的……至此暑假训练就结束了,也算没有遗憾……. 题解如下: Pro ...

  7. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  8. BestCoder Round #86 二,三题题解(尺取法)

    第一题太水,跳过了. NanoApe Loves Sequence题目描述:退役狗 NanoApe 滚回去学文化课啦! 在数学课上,NanoApe 心痒痒又玩起了数列.他在纸上随便写了一个长度为 nn ...

  9. HDU 6787 Chess 2020百度之星 初赛三 T5 题解 dp

    传送门:HDU 6787 Chess Problem Description 你现在有一个棋盘,上面有 n 个格子,格子从左往右,1,-,n 进行标号.你可以在棋盘上放置恰好 m 个传送器,并且对于每 ...

随机推荐

  1. (二十五)c#Winform自定义控件-有确定取消的窗体(一)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  2. 解放双手——相机与IMU外参的在线标定

    本文作者 沈玥伶,公众号:计算机视觉life,编辑部成员 一.相机与IMU的融合 在SLAM的众多传感器解决方案中,相机与IMU的融合被认为具有很大的潜力实现低成本且高精度的定位与建图.这是因为这两个 ...

  3. Python机器学习之数据探索可视化库yellowbrick

    # 背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plot ...

  4. 简析 Golang net/http 包

    net/http 包涵盖了与 HTTP 请求发送和处理的相关代码.虽然包中定义了大量类型.函数,但最重要.最基础的概念只有两个:ServeMux 和 Handler. ServeMux 是 HTTP ...

  5. 记:使用vue全家桶 + vux组件库 打包成 dcloud 5+ app 开发过程中遇到的问题

    vue-cli 版本:2.9.6   webpack 版本:3.6.0 1. vue-cli 安装好之后,不是自动打开默认浏览器 在 config文件夹 ---> dev选项中,有个 autoO ...

  6. Leetcode之二分法专题-875. 爱吃香蕉的珂珂(Koko Eating Bananas)

    Leetcode之二分法专题-875. 爱吃香蕉的珂珂(Koko Eating Bananas) 珂珂喜欢吃香蕉.这里有 N 堆香蕉,第 i 堆中有 piles[i] 根香蕉.警卫已经离开了,将在 H ...

  7. React-native 关于 android真机 出现连不上服务器

    我们都知道使用RN开发移动端应用时,我们要在手机端运行程序,可以下载 expo 这个软件进行扫描二维码连接到开发的APP上 有时会有突然连不上之前连上过的应用,出现如下画面 首先保证你的电脑和你的手机 ...

  8. Mac迅雷瘦身精简教程

    迅雷是个大家很熟悉的工具了,尽管吐槽的人不少,但相信大家也都是口嫌体直,边骂边用. 其实 macOS 版迅雷在界面上,相比于 Windows 的客户端来说,已经很克制了,但有些功能仍然对用户造成了干扰 ...

  9. java基础-多线程一

    什么是线程 说到线程就不得不说下进程了, 大家都知道,许许多多的线程组合在一起就成了一个进程,进程是由操作系统进行资源操作的一个最小的单位,线程则是比进程更小的实际执行操作的单位:每个线程都有自己的堆 ...

  10. iOS Autoresizing Autolayout Size classes

    Autoresizing:出现最早,仅仅能够针对父控件做约束(注意:要关闭Autolayout&Size classes才能够看到Autoresizing) 代码对应: UIView.h中的a ...