Problem

In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. Cells number i and i+1 are adjacent, and prisoners in adjacent cells are called "neighbours." A wall with a window separates adjacent cells, and neighbours can communicate through that window.

All prisoners live in peace until a prisoner is released. When that happens, the released prisoner's neighbours find out, and each communicates this to his other neighbour. That prisoner passes it on to hisother neighbour, and so on until they reach a prisoner with no other neighbour (because he is in cell 1, or in cell P, or the other adjacent cell is empty). A prisoner who discovers that another prisoner has been released will angrily break everything in his cell, unless he is bribed with a gold coin. So, after releasing a prisoner in cell A, all prisoners housed on either side of cell A - until cell 1, cell P or an empty cell - need to be bribed.

Assume that each prison cell is initially occupied by exactly one prisoner, and that only one prisoner can be released per day. Given the list of Q prisoners to be released in Q days, find the minimum total number of gold coins needed as bribes if the prisoners may be released in any order.

Note that each bribe only has an effect for one day. If a prisoner who was bribed yesterday hears about another released prisoner today, then he needs to be bribed again.

Input

The first line of input gives the number of cases, NN test cases follow. Each case consists of 2 lines. The first line is formatted as

P Q

where P is the number of prison cells and Q is the number of prisoners to be released. 
This will be followed by a line with Q distinct cell numbers (of the prisoners to be released), space separated, sorted in ascending order.

Output

For each test case, output one line in the format

Case #X: C

where X is the case number, starting from 1, and C is the minimum number of gold coins needed as bribes.

Limits

1 ≤ N ≤ 100
Q ≤ P
Each cell number is between 1 and P, inclusive.

Large dataset

1 ≤ P ≤ 10000
1 ≤ Q ≤ 100

Sample

Input 
 
Output 
 
2
8 1
3
20 3
3 6 14
Case #1: 7
Case #2: 35

Note

In the second sample case, you first release the person in cell 14, then cell 6, then cell 3. The number of gold coins needed is 19 + 12 + 4 = 35. If you instead release the person in cell 6 first, the cost will be 19 + 4 + 13 = 36.

题解:

  区间dp水题,套路状态dp[l][r]表示将l到r的点全部搞完的最小代价,因为这个状态转移会重复所以考虑加一个限制条件,不包括两个端点。

  那么我们就套路枚举断点,暴力转移,dp[l][r]=min(dp[l][k]+dp[k][r]+w[r]-w[l]-2)减去2是因为不算端点,要加两个关键点0和n,答案就是dp[0][n](因为不考虑端点),我是写的记忆化搜索,自然一点,如果for的话先枚举一个len就可以了。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define ll long long
#define MAXN 500
using namespace std;
int n,q,a[MAXN],w[MAXN],b[MAXN][MAXN];
ll dp[MAXN][MAXN]; ll dfs(int l,int r){
if(b[l][r]) return dp[l][r];
if(l+==r) return ;
b[l][r]=;
ll tmp=<<;
for(int i=l+;i<=r;i++){
tmp=min(tmp,dfs(l,i)+dfs(i,r)+w[r]-w[l]-);
}
dp[l][r]=tmp;
return tmp;
} int main()
{
int t;cin>>t;int Case=;
while(t--){
scanf("%d%d",&n,&q);
memset(b,,sizeof(b));
memset(dp,,sizeof(dp));
memset(a,,sizeof(a));
memset(w,,sizeof(w));
for(int i=;i<=q;i++) scanf("%d",&a[i]);
a[++q]=,a[++q]=n+;
sort(a+,a+q+);
for(int i=;i<=q;i++) w[i]=a[i];
int k=unique(w+,w+q+)-w-;
for(int i=;i<=q;i++) a[i]=lower_bound(w+,w+k+,a[i])-w;
printf("Case #%d: %lld\n",++Case,dfs(,k));
}
return ;
}

Bribe the Prisoners SPOJ - GCJ1C09C的更多相关文章

  1. GCJ1C09C - Bribe the Prisoners

    GCJ1C09C - Bribe the Prisoners Problem In a kingdom there are prison cells (numbered 1 to P) built t ...

  2. spoj GCJ1C09C Bribe the Prisoners

    题目链接: http://www.spoj.com/problems/GCJ1C09C/ 题意: In a kingdom there are prison cells (numbered 1 to  ...

  3. Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)

    Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...

  4. 贿赂囚犯 Bribe the prisoners ( 动态规划+剪枝)

    一个监狱里有P个并排着的牢房,从左往右一次编号为1,2,-,P.最初所有牢房里面都住着一个囚犯.现在要释放一些囚犯.如果释放某个牢房里的囚犯,必须要贿赂两边所有的囚犯一个金币,直到监狱的两端或者空牢房 ...

  5. GCJ Round 1C 2009 Problem C. Bribe the Prisoners

    区间DP.dp[i][j]表示第i到第j个全部释放最小费用. #include<cstdio> #include<cstring> #include<cmath> ...

  6. spoj14846 Bribe the Prisoners

    看来我还是太菜了,这么一道破题做了那么长时间...... 传送门 分析 我首先想到的是用状压dp来转移每一个人是否放走的状态,但是发现复杂度远远不够.于是我们考虑区间dp,dpij表示i到j区间的所有 ...

  7. ProgrammingContestChallengeBook

    POJ 1852 Ants POJ 2386 Lake Counting POJ 1979 Red and Black AOJ 0118 Property Distribution AOJ 0333 ...

  8. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  9. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

随机推荐

  1. 1、pytest中文文档--安装和入门

    目录 安装和入门 安装pytest 创建你的第一个测试用例 执行多个测试用例 检查代码是否触发一个指定的异常 在一个类中组织多个测试用例 申请一个唯一的临时目录用于功能测试 安装和入门 Python版 ...

  2. 脱离脚手架来配置、学习 webpack4.x (一)基础搭建项目

    序 现在依旧记得第一次看到webpack3.x 版本配置时候的状态  刚开始看到这些真的是一脸懵.希望这篇文章能帮到刚开始入门的同学. webpack 是什么? webpack是一个模块化打包工具,w ...

  3. Python学习之String

    Strings可以想象成一个有序列的数组 #Indexing planet = 'Pluto' planet[0] 'P' #Slicing planet[-3:] 'uto' #How long l ...

  4. linux中启动Zookeeper

    1.先把zookeeper的安装包解压在/usr/local,如下: 2.进入zookeeper目录,创建一个data目录 3.进入同级conf目录下,里面有zoo_sample.cfg,修改该文件名 ...

  5. 初步认识JWT

    前言: 现在越来越多的项目或多或少会用到JWT,为什么会出现使用JWT这样的场景的呢? 假设现在有一个APP,后台是分布式系统.APP的首页模块部署在上海机房的服务器上,子页面模块部署在深圳机房的服务 ...

  6. .netcore 使用阿里云短信

    准备工作 阿里云上申请短信服务 创建短信应用.签名.短信模板并申请审核,如果审核不通过,接口是调不通的. 配置专门用来发短信的accessKeyId和 accessKeySecret 开始开发 下载安 ...

  7. pageable多字段排序问题

    Sort sort = new Sort(Sort.Direction.DESC, "createdate") .and(new Sort(Sort.Direction.AES, ...

  8. git之rebase、merge和cherry pick的区别(面试常问)

    git flow图例镇楼 merge 这个简单,初学者常用.比如主分支是Dev,最新版本是01.然后小明基于此,搞了个feature 分支A,业务:打酱油.然后在上面多次提交,完成功能迭代开发,如A1 ...

  9. windows安装mingw和LuaJIT

    1,安装mingw64 先下载mingw64压缩包(不建议下载exe安装包,在线安装太慢),地址如下: https://nchc.dl.sourceforge.net/project/mingw-w6 ...

  10. js 事件委托获取子元素下标

    html:部分 <ul> <li>第一个</li> <li>第二个</li> <li>第三个</li> <li ...