Application ID is application_1481285758114_422243, trackingURL: http://***:4040
Exception in thread "main" org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://mycluster-tj/user/engine_arch/data/mllib/sample_libsvm_data.txt
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:287)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1994)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1025)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007)
at org.apache.spark.mllib.util.MLUtils$.loadLibSVMFile(MLUtils.scala:105)
at org.apache.spark.mllib.util.MLUtils$.loadLibSVMFile(MLUtils.scala:134)
at org.apache.spark.ml.source.libsvm.LibSVMRelation.buildScan(LibSVMRelation.scala:49)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$.apply(DataSourceStrategy.scala:135)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54)
at org.apache.spark.sql.execution.SparkStrategies$BasicOperators$.apply(SparkStrategies.scala:336)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:47)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:45)
at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:52)
at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:52)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
at org.apache.spark.sql.DataFrame.rdd$lzycompute(DataFrame.scala:1638)
at org.apache.spark.sql.DataFrame.rdd(DataFrame.scala:1635)
at org.apache.spark.sql.DataFrame.map(DataFrame.scala:1411)
at org.apache.spark.ml.feature.StandardScaler.fit(StandardScaler.scala:90)
at com.xiaoju.arch.engine.spark.SparkDD.buildStandardScaler(SparkDD.java:149)
at com.xiaoju.arch.engine.spark.StandardScalerDemo.main(StandardScalerDemo.java:13)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

spark中读取文件,在yarn模式下,必须将文件存入hdfs中,不然就会报错。单机模式下无此问题。

spark on yarn 提交任务出错的更多相关文章

  1. 【原创】大叔经验分享(19)spark on yarn提交任务之后执行进度总是10%

    spark 2.1.1 系统中希望监控spark on yarn任务的执行进度,但是监控过程发现提交任务之后执行进度总是10%,直到执行成功或者失败,进度会突然变为100%,很神奇, 下面看spark ...

  2. spark利用yarn提交任务报:YARN application has exited unexpectedly with state UNDEFINED

    spark用yarn提交任务会报ERROR cluster.YarnClientSchedulerBackend: YARN application has exited unexpectedly w ...

  3. 【原创】大叔经验分享(14)spark on yarn提交任务到集群后spark-submit进程一直等待

    spark on yarn通过--deploy-mode cluster提交任务之后,应用已经在yarn上执行了,但是spark-submit提交进程还在,直到应用执行结束,提交进程才会退出,有时这会 ...

  4. Spark通过YARN提交任务不成功(包含YARN cluster和YARN client)

    无论用YARN cluster和YARN client来跑,均会出现如下问题. [spark@master spark-1.6.1-bin-hadoop2.6]$ jps 2049 NameNode ...

  5. spark on yarn提交任务时报ClosedChannelException解决方案

    spark2.1出来了,想玩玩就搭了个原生的apache集群,但在standalone模式下没有任何问题,基于apache hadoop 2.7.3使用spark on yarn一直报这个错.(Jav ...

  6. Spark之Yarn提交模式

    一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...

  7. spark跑YARN模式或Client模式提交任务不成功(application state: ACCEPTED)

    不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPA ...

  8. spark跑YARN模式或Client模式提交任务不成功(application state: ACCEPTED)(转)

    不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPA ...

  9. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

随机推荐

  1. Redis两种持久化方式(RDB&AOF)

    爬虫和转载请注明原文地址;博客园蜗牛:http://www.cnblogs.com/tdws/p/5754706.html Redis所需内存 超过可用内存怎么办 Redis修改数据多线程并发—Red ...

  2. for xml path 将单表中一个字段用逗号分隔

    我也是才知道这种用法的,刚好又用到写个简单的例子. select Name from tc_order_detail 如下表,现在要将做到将name每个以逗号连接 declare @df nvarch ...

  3. .NET中DateTime.Now.ToString的格式化字符串

    .NET中DateTime.Now.ToString显示毫秒:DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss.fff") DateTime.N ...

  4. 关于C#操作防火墙,阻止程序联网

    //开启服务.开启防火墙 public void OpenFileWall() { // 1. 判断当前系统为XP或Win7 RegistryKey rk = Registry.LocalMachin ...

  5. IT基础架构规划方案三(IT基础软件和系统规划)

    IT基础软件和系统规划 操作系统选型规划方案 根据对某集团的实际调研,获取了企业业务应用系统的建设情况,随着企业信息化建设的推进,需要对各种信息化管理系统和应用系统的服务器选型进行选型规划,根据不同的 ...

  6. JS全屏漂浮广告、移入光标停止移动

    点击这里查看效果 以下是代码: <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Ty ...

  7. SuperMap iServer 扩展服务及扩展服务提供者范例

    一.扩展服务实例 1.将iserver-extend1下的listener.java打成jar包2.复制到D:\SuperMap-iServer\webapps\iserver\WEB-INF\lib ...

  8. Android 一个对sharedpreferences 数据进行加密的开源库

    1.项目地址 https://github.com/iamMehedi/Secured-Preference-Store 2.使用方法 2.1.存数据 //存数据 SecuredPreferenceS ...

  9. web开发技术-过滤器

    纪录自己的学习过程,帮助记忆 1.简介 过滤器是服务器端的一个组件,可以接收用户端的请求和响应信息,并且对这些信息进行过滤 过滤器不处理结果,只做一些辅助性操作 2.过滤器的工作原理 3.过滤器的生命 ...

  10. ObjectAnimator.start()工作原理

    分析下面一段代码的逻辑 objectAnimator.start(); 他会调用父类的start(),即ValueAnimator,我们分析valueAnimator.start()即可 ValueA ...