Roping the Field

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 858   Accepted: 250

Description

Farmer John is quite the nature artist: he often constructs large works of art on his farm. Today, FJ wants to construct a giant "field web". FJ's field is large convex polygon with fences along the boundary and fence posts at each of the N corners (1 <= N <= 150). To construct his field web, FJ wants to run as many ropes as possible in straight lines between pairs of non-adjacent fence posts such that no two ropes cross. 

There is one complication: FJ's field is not completely usable. Some evil aliens have created a total of G (0 <= G <= 100) grain circles in the field, all of radius R (1 <= R <= 100,000). FJ is afraid to upset the aliens, and therefore doesn't want the ropes to pass through, or even touch the very edge of a grain circle. Note that although the centers of all the circles are contained within the field, a wide radius may make it extend outside of the field, and both fences and fence posts may be within a grain circle. 

Given the locations of the fence posts and the centers of the circles, determine the maximum number of ropes that FJ can use to create his field web. 

FJ's fence pots and the circle centers all have integer coordinates X and Y each of which is in the range 0..1,000,000.

Input

Line 1: Three space-separated integers: N, G, and R 

Lines 2..N+1: Each line contains two space-separated integers that are the X,Y position of a fence post on the boundary of FJ's field. 

Lines N+2..N+G+1: Each line contains two space-separated integers that are the X,Y position of a circle's center inside FJ's field.

Output

Line 1: A single integer that is the largest number of ropes FJ can use for his artistic creation.

Sample Input

5 3 1
6 10
10 7
9 1
2 0
0 3
2 2
5 6
8 3

Sample Output

1

Hint

Explanation of the sample: 

A pentagonal field, in which all possible ropes are blocked by three grain circles, except for the rope between fenceposts 2 and 4.

题意:

在一平面上,按顺序给定 n 个点(事实上给出的点可以按顺逆时针围成一个闭合的多边形),m 个半径为 r 的圆。要给 n 个点两两连线,要求最多能连多少条线;
连线限制:
  1. 连线不能穿过任意一个圆,也不能与圆相切;
  2. 连线不能在中途相交,同一个点可以连多条线;
  3. 相邻的两个点不能连线(第一个点和第 n 个点是相邻的)。

思路:

首先在不考虑相交的情况下预处理出哪两个点可以连线,然后dp;

dp[i][j] 表示第 i 个点到第 j 个点最多可连多少条线,dp[i][j] = max(dp[i][k] + dp[k][j] + cnc[i][j], dp[i][j]);

其中 i < k < j;cnc[i][j] 表示 i , j 能否连线,能则为1,否则为0;

代码:

#include<map>
#include<set>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<cctype>
#include<cfloat>
#include<cstdio>
#include<memory>
#include<string>
#include<vector>
#include<cassert>
#include<csignal>
#include<cstdlib>
#include<cstring>
#include<numeric>
#include<utility>
#include<iostream>
#include<algorithm>
#include<functional>
#define LL long long
#define PB push_back
#define MAXN 171
#define RPT(I,L,R) for(int I=L;I<R;++I)
#define TPR(I,R,L) for(int I=R;I>=L;--I)
using namespace std;
template<class T> bool Umx(T &A,const T &B)
{
return B>A?A=B,1:0;
}
template<class T> bool Umn(T &A,const T &B)
{
return B<A?A=B,1:0;
}
const int inf=~0u>>2; int n,m,i,j,k;
LL r;
bool cnc[MAXN][MAXN];
int f[MAXN][MAXN]; struct point
{
LL x,y;
bool operator < (const point &T) const
{
return this->y<T.y || (this->y==T.y && this->x<T.x);
}
void read()
{
scanf("%I64d%I64d",&x,&y);
}
} p[MAXN],c[MAXN]; inline LL sqr(LL X)
{
return X*X;
}
inline LL dot(point A,point B,point O)
{
return (A.x-O.x)*(B.x-O.x)+(A.y-O.y)*(B.y-O.y);
}
inline LL cross(point A,point B)
{
return A.x*B.y-B.x*A.y;
}
inline LL cross(point A,point B,point O)
{
return (A.x-O.x)*(B.y-O.y)-(B.x-O.x)*(A.y-O.y);
}
inline LL dist2(point A,point B)
{
return sqr(A.x-B.x)+sqr(A.y-B.y);
} struct cmp
{
point O;
cmp(const point &OO):O(OO) {}
bool operator()(const point &A,const point &B)
{
return cross(A,B,O)>0;
}
}; void init()
{
memset(f,-1,sizeof f);
scanf("%d%d%d",&n,&m,&r);
RPT(i,0,n) p[i].read();
RPT(i,0,m) c[i].read();
sort(p,p+n);
sort(p+1,p+n,cmp(p[0]));
} bool CrsCcl(point A,point B,point O)
{
if (sqr(r)>=min(dist2(O,A),dist2(O,B))) return true;
if (dot(B,O,A)<0ll || dot(A,O,B)<0ll) return false;
return (double)r*r*dist2(A,B)>=(double)cross(A,B,O)*cross(A,B,O);
} void Deal_Cnc()
{
memset(cnc,false,sizeof cnc);
RPT(i,0,n)
RPT(j,i+2,n)
if (!(i==0 && j==n-1))
{
cnc[i][j]=cnc[j][i]=true;
RPT(k,0,n)
if (CrsCcl(p[i],p[j],c[k]))
{
cnc[i][j]=cnc[j][i]=false;
break;
}
}
} int DP(int L,int R)
{
if (f[L][R]>0) return f[L][R];
if (R-L<2) return f[L][R]=0;
else if (R-L==2) return cnc[L][R];
int res=0;
RPT(i,L+1,R) Umx(res,DP(L,i)+DP(i,R));
return f[L][R]=res+cnc[L][R];
} int main()
{
init();
Deal_Cnc();
printf("%d\n",DP(0,n-1));
return 0;
}

poj3178 Roping the Field (计算几何 + dp)的更多相关文章

  1. BZOJ 1719--[Usaco2006 Jan] Roping the Field 麦田巨画(几何&区间dp)

    1719: [Usaco2006 Jan] Roping the Field 麦田巨画 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 82  Solved ...

  2. sdut 2153:Clockwise(第一届山东省省赛原题,计算几何+DP)

    Clockwise Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Saya have a long necklace with ...

  3. POJ3178 计算几何+DP

    //一些点一些圆,过圆不能连线,相邻点不能连线,问最多连几条线 //计算几何模板+区间dp //关键是判断圆和线段是否相交 #include <cstdio> #include <c ...

  4. 『HGOI 20190917』Cruise 题解 (计算几何+DP)

    题目概述 在平面直角坐标系的第$1$象限和第$4$象限有$n$个点,其中第$i$个点的坐标为$(x_i,y_i)$,有一个权值$p_i$ 从原点$O(0,0)$出发,不重复的经过一些点,最终走到原点, ...

  5. HDU 4562 守护雅典娜 (计算几何+DP)

    守护雅典娜 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submi ...

  6. Code Chef MINPOLY(计算几何+dp)

    题面 传送门 题解 我们枚举这个凸多边形\(y\)坐标最小的点\(p_i\),然后对于所有\(y\)坐标大于等于它的点极角排序 我们预处理出\(s_{j,k}\)表示三角形\(p_i,p_j,p_k\ ...

  7. bzoj 3778: 共鸣【计算几何+dp】

    枚举起点,然后设f[i][j]为上凸壳上一个点是i当前点是j的最大面积,g是下凸壳,然后合并的时候枚举结束点t合并上下凸壳即可 这样的好处是每次转移都是往凸多边形里加一个三角形(s,i,j),所以判断 ...

  8. POJ 3254 Corn Fields:网格密铺类 状压dp

    题目链接:http://poj.org/problem?id=3254 题意: 给你一片n*m的耕地,你可以在上面种玉米.但是其中有一些地方是荒芜的,不能种植.并且种植玉米的地方不能相邻.问你在这片地 ...

  9. hdu 1081 dp问题:最大子矩阵和

    题目链接 题意:给你一个n*n矩阵,求这个矩阵的最大子矩阵和 #include<iostream> #include<cstdio> #include<string.h& ...

随机推荐

  1. Element-UI:级联选择器:Cannot read property 'level' of null"

    当级联选择时如果其选择内容需要动态变化时,如果没有选择就不会报错的:而当做出选择后又要动态变化级联选择器内容时,就会报错/ 错误:这个错误的原因是当选择后,再更新内容时,选择器仍会关联原来的数据,导致 ...

  2. springboot集成swagger文档

    //此处省略springboot创建过程 1.引入swagger相关依赖(2个依赖必须版本相同) <dependency> <groupId>io.springfox</ ...

  3. QT博客:QT学习之路

    http://www.qter.org/thread-629-1-1.html

  4. html 网页美化--2

    html网页美化: 鼠标点击特效:爱心.爆炸烟花(有些特效在Chrome中无法实现,推荐使用edge) 背景樱花花瓣 鼠标滑动彩带 此代码也可以用于博客园主页美化(需要申请JS权限):复制到博客侧边栏 ...

  5. 02 Writing Your First Program 写你的第一个C程序

    Let's print "Hi" 打印输出"Hi" In your first computer program, let's print something ...

  6. Ubuntu通过Nginx安装Webdav

    使用KeePass保存密码,在个人服务器上安装WebDav协议. # nginx nginx-extras apache2-utils sudo aptitude install nginx ngin ...

  7. 2-Java面试-面向对象

    Java面试问题-面向对象 Q1.什么是多态? 多态被简要描述为"一个接口,许多实现".多态性是能够在不同上下文中为某事物赋予不同含义或用法的一种特征-具体来说,就是允许诸如变量, ...

  8. C# 主界面的扁平化

    如果需要查看更多文章,请微信搜索公众号 csharp编程大全,需要进C#交流群群请加微信z438679770,备注进群, 我邀请你进群! ! ! --------------------------- ...

  9. thinkphp6.0.x 反序列化详记(一)

    前言 这几天算是进阶到框架类漏洞的学习了,首当其冲想到是thinkphp,先拿thinkphp6.0.x来学习一下,体验一下寻找pop链的快乐. 在此感谢楷师傅的帮忙~ 环境配置 用composer指 ...

  10. element中过滤器filters的使用(开发小记)

    之前在开发过程中遇到这么一个问题,一串数据需要在el-table中展示,其中含有金额字段,需要将其转换成标准数据格式,即三位一个逗号间隔. 今年刚毕业就上手项目了,第一次接触的Vue,开发经验少,也忘 ...