HDU2767Proving Equivalences[强连通分量 缩点]
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6006 Accepted Submission(s):
2051
linear algebra textbook.
Let A be an n × n matrix. Prove that the
following statements are equivalent:
1. A is invertible.
2. Ax = b has
exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for
every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of
implications. For instance, one can proceed by showing that (a) implies (b),
that (b) implies (c), that (c) implies (d), and finally that (d) implies (a).
These four implications show that the four statements are
equivalent.
Another way would be to show that (a) is equivalent to (b)
(by proving that (a) implies (b) and that (b) implies (a)), that (b) is
equivalent to (c), and that (c) is equivalent to (d). However, this way requires
proving six implications, which is clearly a lot more work than just proving
four implications!
I have been given some similar tasks, and have already
started proving some implications. Now I wonder, how many more implications do I
have to prove? Can you help me determine this?
testcases, at most 100. After that per testcase:
* One line containing
two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements
and the number of implications that have already been proved.
* m lines with
two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has
been proved that statement s1 implies statement s2.
* One line with the minimum number
of additional implications that need to be proved in order to prove that all
statements are equivalent.
4 0
3 2
1 2
1 3
2
和上题一样
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=2e4+,M=5e4+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u,v;
struct edge{
int v,ne;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int dfn[N],low[N],belong[N],dfc,scc;
int st[N],top=;
void dfs(int u){
dfn[u]=low[u]=++dfc;
st[++top]=u;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!dfn[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!belong[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
scc++;
while(true){
int x=st[top--];
belong[x]=scc;
if(x==u) break;
}
}
}
void findSCC(){
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
memset(low,,sizeof(low));
dfc=scc=top=;
for(int i=;i<=n;i++) if(!dfn[i]) dfs(i);
}
int outd[N],ind[N];
void point(){
memset(ind,,sizeof(ind));
memset(outd,,sizeof(outd));
for(int u=;u<=n;u++)
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(belong[u]!=belong[v]) outd[belong[u]]++,ind[belong[v]]++;
}
}
int T;
int main(){
T=read();
while(T--){
n=read();m=read();
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=m;i++){u=read();v=read();ins(u,v);}
findSCC();
point();
int cnt1=,cnt2=;
for(int i=;i<=scc;i++){
if(ind[i]==) cnt1++;
if(outd[i]==) cnt2++;
}
if(scc==) printf("0\n");
else printf("%d\n",max(cnt1,cnt2));
}
}
HDU2767Proving Equivalences[强连通分量 缩点]的更多相关文章
- HD2767Proving Equivalences(有向图强连通分量+缩点)
题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...
- UVALIVE 4287 Proving Equivalences (强连通分量+缩点)
题意:给定一个图,问至少加入多少条边能够使这个图强连通. 思路:首先求出这个图的强连通分量.然后把每个强连通分量缩成一个点.那么这个图变成了一个DAG,求出全部点的入度和出度,由于强连通图中每个节点的 ...
- 训练指南 UVALive - 4287 (强连通分量+缩点)
layout: post title: 训练指南 UVALive - 4287 (强连通分量+缩点) author: "luowentaoaa" catalog: true mat ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- POJ1236Network of Schools(强连通分量 + 缩点)
题目链接Network of Schools 参考斌神博客 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后 ...
- UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)
题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...
- ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)
题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...
- POJ2553 The Bottom of a Graph(强连通分量+缩点)
题目是问,一个有向图有多少个点v满足∀w∈V:(v→w)⇒(w→v). 把图的强连通分量缩点,那么答案显然就是所有出度为0的点. 用Tarjan找强连通分量: #include<cstdio&g ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
随机推荐
- eclipse报错:Failed to load the JNI shared library
Eclipse运行时提示“Failed to load the JNI shared library /Java/jre6/bin/client/jvm.dll”的一个解决方案 因为 Eclipse ...
- jquery点击隐藏和显示
<script type="text/javascript"> $("#close").click(function(){ $("#cen ...
- 【转】php pdo连接数据库 解决中文乱码问题(wordpress mysql 问号?? ??)
原文链接:http://blog.csdn.net/ysydao/article/details/11002295 PHP 用pdo连接数据库时出现中文乱码问题解决办法 1.array(PDO::MY ...
- 5、ASP.NET MVC入门到精通——NHibernate代码映射
本系列目录:ASP.NET MVC4入门到精通系列目录汇总 上一篇NHibernate学习笔记—使用 NHibernate构建一个ASP.NET MVC应用程序 使用的是xml进行orm映射,那么这一 ...
- SSH整合之全注解
SSH整合之全注解 使用注解配置,需要我们额外引入以下jar包
- iframe高度自适应
前两天在网上看到了一道面试题,问iframe高度自适应的问题.发现自己之前几乎没有关注过iframe的问题,所以在这里记录一下. 原题目是: 页面A的域名是:http://www.taobao.com ...
- table tr foreach td 换行
@{ ;} <table style=" class="sy_table"> <tr> @foreach (DataRow dr in (View ...
- 如何设置TextView控件的背景透明度和字体透明度
如何设置TextView控件的背景透明度和字体透明度 设计师给的标注都是类似这样的: 字号:26 颜色:#000000 透明度:80% 其实,程序上只要需要一个色值就OK了,那么这个色值我如何计算呢? ...
- String.Empty、null、“” 区别
概念准备: 1.引用类型是将对象是实际数据保存在堆中, 将对象在堆中的地址保存在栈中. 2.值类型直接将实际数据存放在堆中,不会将对象在堆中的地址保存在栈中. 一.String.Empty和" ...
- Oracle数据泵(Data Dump)错误汇集
Oracle数据泵(Data Dump)使用过程当中经常会遇到一些奇奇怪怪的错误案例,下面总结一些自己使用数据泵(Data Dump)过程当中遇到的问题以及解决方法.都是在使用过程中遇到的问题,以后陆 ...