HDU2767Proving Equivalences[强连通分量 缩点]
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6006 Accepted Submission(s):
2051
linear algebra textbook.
Let A be an n × n matrix. Prove that the
following statements are equivalent:
1. A is invertible.
2. Ax = b has
exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for
every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of
implications. For instance, one can proceed by showing that (a) implies (b),
that (b) implies (c), that (c) implies (d), and finally that (d) implies (a).
These four implications show that the four statements are
equivalent.
Another way would be to show that (a) is equivalent to (b)
(by proving that (a) implies (b) and that (b) implies (a)), that (b) is
equivalent to (c), and that (c) is equivalent to (d). However, this way requires
proving six implications, which is clearly a lot more work than just proving
four implications!
I have been given some similar tasks, and have already
started proving some implications. Now I wonder, how many more implications do I
have to prove? Can you help me determine this?
testcases, at most 100. After that per testcase:
* One line containing
two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements
and the number of implications that have already been proved.
* m lines with
two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has
been proved that statement s1 implies statement s2.
* One line with the minimum number
of additional implications that need to be proved in order to prove that all
statements are equivalent.
4 0
3 2
1 2
1 3
2
和上题一样
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=2e4+,M=5e4+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u,v;
struct edge{
int v,ne;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int dfn[N],low[N],belong[N],dfc,scc;
int st[N],top=;
void dfs(int u){
dfn[u]=low[u]=++dfc;
st[++top]=u;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!dfn[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!belong[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
scc++;
while(true){
int x=st[top--];
belong[x]=scc;
if(x==u) break;
}
}
}
void findSCC(){
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
memset(low,,sizeof(low));
dfc=scc=top=;
for(int i=;i<=n;i++) if(!dfn[i]) dfs(i);
}
int outd[N],ind[N];
void point(){
memset(ind,,sizeof(ind));
memset(outd,,sizeof(outd));
for(int u=;u<=n;u++)
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(belong[u]!=belong[v]) outd[belong[u]]++,ind[belong[v]]++;
}
}
int T;
int main(){
T=read();
while(T--){
n=read();m=read();
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=m;i++){u=read();v=read();ins(u,v);}
findSCC();
point();
int cnt1=,cnt2=;
for(int i=;i<=scc;i++){
if(ind[i]==) cnt1++;
if(outd[i]==) cnt2++;
}
if(scc==) printf("0\n");
else printf("%d\n",max(cnt1,cnt2));
}
}
HDU2767Proving Equivalences[强连通分量 缩点]的更多相关文章
- HD2767Proving Equivalences(有向图强连通分量+缩点)
题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...
- UVALIVE 4287 Proving Equivalences (强连通分量+缩点)
题意:给定一个图,问至少加入多少条边能够使这个图强连通. 思路:首先求出这个图的强连通分量.然后把每个强连通分量缩成一个点.那么这个图变成了一个DAG,求出全部点的入度和出度,由于强连通图中每个节点的 ...
- 训练指南 UVALive - 4287 (强连通分量+缩点)
layout: post title: 训练指南 UVALive - 4287 (强连通分量+缩点) author: "luowentaoaa" catalog: true mat ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- POJ1236Network of Schools(强连通分量 + 缩点)
题目链接Network of Schools 参考斌神博客 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后 ...
- UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)
题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...
- ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)
题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...
- POJ2553 The Bottom of a Graph(强连通分量+缩点)
题目是问,一个有向图有多少个点v满足∀w∈V:(v→w)⇒(w→v). 把图的强连通分量缩点,那么答案显然就是所有出度为0的点. 用Tarjan找强连通分量: #include<cstdio&g ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
随机推荐
- [C#] .NET4.0中使用4.5中的 async/await 功能实现异
好东西需要分享 原文出自:http://www.itnose.net/detail/6091186.html 在.NET Framework 4.5中添加了新的异步操作库,但是在.NET Framew ...
- 在.NET Core 1.0 RC2 上 运行 Orchard2
http://www.freeboygirl.com/running-orchard2-cms-on-core-rc2-net
- Java基本概念(1)什么是Java
什么是Java Java是一种开发语言(核心特点:跨平台,面向对象,名称由来看这里:J2EE里面的2是什么意思),对于开发者来讲,Java基本等于Jdk. Jdk的版本介绍看这里:Java都有那些版本 ...
- JAVA collection集合之 扑克牌游戏
主要内容:这里使用collection集合,模拟香港电影中大佬们玩的扑克牌游戏. 1.游戏规则:两个玩家每人手中发两张牌,进行比较.比较每个玩家手中牌最大的点数,大小由A-2,点数大者获胜.如果点数相 ...
- Java源代码-迭代器模式
Java无疑是最成功的项目之一了,而在其中学习设计模式和架构设计,无疑是最好不过了. 概念: 提供一种方法访问容器中的各个元素,而又不暴露该对象的内部细节. 使用场景: 和容器经常在一起,我们定义了一 ...
- css判断不同分辨率显示不同宽度布局实现自适应宽度
一.CSS DIV网页布局中当分辨率小于等于1024px(像素)时,DIV布局对象显示1000px宽度,当分辨率大于1024px时候显示1200px宽度等需求.使用CSS实现改变浏览器显示宽度从而实现 ...
- 走进 .Net 单元测试
走进 .Net 单元测试 Intro "不会写单元测试的程序员不是合格的程序员,不写单元测试的程序员不是优秀程序员." -- 一只想要成为一个优秀程序员的渣逼程序猿. 那么问题来了 ...
- 第一次react-native项目实践要点总结
今天完成了我的第一个react-native项目的封包,当然其间各种环境各种坑,同时,成就感也是满满的.这里总结一下使用react-native的一些入门级重要点(不涉及环境).注意:阅读需要语法基础 ...
- C# 生成字符串的 CheckSum
C# 生成字符串的 CheckSum private static string CheckSum(string message) { char[] chars = message.ToCharArr ...
- 敏捷开发与jira之燃烧图
项目当前版本的燃烧图是下面这样的 存在的问题: 1.任务在版本起始时期之后再细化,造成了绿线一直在红线上面.解决方案:版本起始日期定为任务录入结束后的日期 2.工时录入不及时,没有实时反映当前项目组的 ...