Java和Pathon可以不用往下看了

C++的基本数据类型中,范围最大的数据类型不同编译器不同,但是最大的整数范围只有[-2^63—2^63-1](对应8个字节所对应的二进制数大小)。但是对于某些需要更大数据的问题来说,C++的基本数据类型就不够用了。因此大整数类应运而生。

大整数类实现的基本思路:使用数组来储存数字的每一位,然后用类似于手写“+-×÷”竖式的过程来实现大整数类的加减乘除运算。注意每一个数在数组中都是高位在后,低位在前这样便于进行运算。

代码如下:

详细的东西都在注释中写出来了

函数的接口:因为是string类型的,所以在初始化的时候为Bright(“1”),注意要加双引号。

 1 #include <iostream>
2 #include <cstring>
3 #include <queue>
4 using namespace std;
5 const int maxn = 100;//根据要求定
6 struct Bright {
7 int len, a[maxn] = { 0 };//数组的初始化很重要
8 string x;
9 Bright(string x = "0")//初始化函数
10 {
11 len = x.length();
12 for (int i = len - 1, j = 1; i >= 0; j++, i--)
13 a[j] = x[i] - '0';
14 while (!a[len] && len > 0)//确定位数
15 len--;
16 }
17 int& operator[](int i)//重新定义[]使程序写起来更为方便,int i 中的i表示[]中的值
18 {
19 return a[i];
20 }
21 void print()//打印出值
22 {
23 for (int i = max(len, 1); i >= 1; i--)
24 cout << a[i];
25 }
26 void zhanpin(int len1)//将数组中所有的数变为一位数(展平)
27 {
28 len = len1;
29 for (int i = 1; i < len; i++)
30 {
31 a[i + 1] += a[i] / 10;
32 a[i] = a[i] % 10;
33 }
34 while (!a[len])//确定位数
35 len--;
36 }
37 };
38
39 Bright operator+(Bright a, Bright b)//高精度+高精度
40 {
41 Bright c;
42 int len = max(a.len, b.len);
43 for (int i = 1; i <= len; i++)
44 c[i] += a[i] + b[i];//计算贡献
45 c.zhanpin(len + 1);
46 return c;
47 }
48
49 Bright operator*(Bright a, int b)//高精度*低精度
50 {
51 Bright c;
52 for (int i = 1; i <= a.len; i++)
53 c[i] = a[i] * b;//计算贡献
54 c.zhanpin(a.len + 11);
55 return c;
56 }
57 Bright operator*(Bright a, Bright b)//高精度*高精度
58 {
59 Bright c;
60 int len = a.len + b.len;
61 for (int i = 1; i <= a.len; i++)
62 for (int j = 1; j <= b.len; j++)
63 c[i + j - 1] += a[i] * b[j];//通过竖式计算可以发现a的第i位以及b的第j位相乘是对c的第i+j-1位有贡献。
64 c.zhanpin(len);
65 return c;
66 }
67
68
69 int main()
70 {
71 string A, B;
72 cin >> A >> B;
73 Bright a(A), b(B), c;
74 c = a * b;//(a+b,a-b)
75 c.print();
76 }

下面附上另一种数组储存,不是string类型储存。

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 100;//根据实际设置大小
struct Bright {
int len, a[maxn];
Bright(int x = 0)//初始化函数
{
memset(a, 0, sizeof(a));//这个初始化很重要,不要忘记了
for (len = 1; x; len++)//判断结束是以x的值来判断
a[len] = x % 10, x = x / 10;//在这里就已经倒置了
len--;
}
int& operator[](int i)//重新定义[]使程序写起来更为方便,int i 中的i表示[]中的值
{
return a[i];
}
void print()//打印出值
{
for (int i = max(len, 1); i >= 1; i--)
cout << a[i];
}
void zhanpin(int len1)//将数组中所有的数变为一位数
{
len = len1;
for (int i = 1; i < len; i++)
{
a[i + 1] += a[i] / 10;
a[i] = a[i] % 10;
}
while (!a[len])//确定位数
len--;
}
}; Bright operator+(Bright a, Bright b)//高精度+高精度
{
Bright c;
int len = max(a.len, b.len);
for (int i = 1; i <= len; i++)
c[i] += a[i] + b[i];//计算贡献
c.zhanpin(len + 1);
return c;
} Bright operator*(Bright a, int b)//高精度*低精度
{
Bright c;
for (int i = 1; i <= a.len; i++)
c[i] = a[i] * b;//计算贡献
c.zhanpin(a.len + 11);
return c;
}
Bright operator*(Bright a, Bright b)//高精度*高精度
{
Bright c;
int len = a.len + b.len;
for (int i = 1; i < a.len; i++)
for (int j = 1; j < b.len; j++)
c[i + j - 1] += a[i] * b[j];
c.zhanpin(len);
return c;
}
//main函数(省略)

C++高精度计算(大整数类)的更多相关文章

  1. C# 基于大整数类的RSA算法实现(公钥加密私钥解密,私钥加密公钥解密)

    但是C#自带的RSA算法类RSACryptoServiceProvider只支持公钥加密私钥解密,即数字证书的使用. 所以参考了一些网上的资料写了一个RSA的算法实现.算法实现是基于网上提供的一个大整 ...

  2. N!的阶乘附带简单大整数类的输入输出(暂时没有深入的了解)

    Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N! 我的思路:就想着大整数类去了,才发现自己还不能很好的掌握,其实这是一个大 ...

  3. 大整数类BIGN的设计与实现 C++高精度模板

    首先感谢刘汝佳所著的<算法竞赛入门经典>. 众所周知,C++中储存能力最大的unsigned long long 也是有着一个上限,如果我们想计算非常大的整数时,就不知所措了,所以,我写了 ...

  4. 用Java的大整数类BigInteger来实现大整数的一些运算

    关于BigInteger的构造函数,一般会用到两个: BigInteger(String val); //将指定字符串转换为十进制表示形式: BigInteger(String val,int rad ...

  5. [ C++ 快速高精度模板 ] [ BigN类 ] 大整数类 高精度 模板 BigInt FFT 快速傅里叶变换

    [原创 转载请注明]瞎写的,如果代码有错,或者各位大佬有什么意见建议,望不吝赐教 更新日志: 对于规模较小的整数乘法使用$$O(n^2)$$方法,提高速度 modify()和operator[]的bu ...

  6. C++ BigInteger 大整数类模板(转)

    #include <deque> #include <vector> #include <iostream> #include <string> #in ...

  7. C++大整数类模板

    参考 :http://172.21.85.56/oj/resource/reportdetail?report_id=1678 支持 =.abs().pow().+=.-= *=./=.%=.+.-. ...

  8. 【Java编程】Java中的大整数计算

    在上一篇文章中,我们实现了c语言中的大整数的运算,并且用Miller-Rabin算法实现了对大素数的测试.本来我准备用Java代码实现大整数的运算,查了一下资料发现Java中java.math的Big ...

  9. Ural 1158. Censored! 有限状态自动机+DP+大整数

    Ural1158 看上去很困难的一道题. 原文地址 http://blog.csdn.net/prolightsfxjh/article/details/54729646 题意:给出n个不同的字符,用 ...

随机推荐

  1. JavaScript——DOMM

    文本节点 != 文本内容

  2. Keywords Search HDU - 2222 AC自动机板子题

    In the modern time, Search engine came into the life of everybody like Google, Baidu, etc. Wiskey al ...

  3. Python——控制鼠标键盘

    一.安装包 pip install pynput 二.引用包 from pynput import mouse,keyboard 三.控制鼠标 from pynput.mouse import But ...

  4. kubernetes实战-配置中心(一)configmap资源

    在我们的环境中测试使用configmap资源,需要先对我们的环境进行一些准备,首先将dubbo服务调整为0个pod ,然后把zookeeper进行拆分: 拆分zk环境,模拟测试环境跟生产环境: 停止z ...

  5. codeforces 1030D Vasya and Triangle【思维+gcd】

    题目:戳这里 题意:选出三个点构成三角形,要求面积为n*m/k. 解题思路:因为三个点的坐标都是正整数,根据三角形面积公式(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2))/2=n* ...

  6. PAT l2-018 多项式A除以多项式B 【多项式+模拟】

    这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出一个非零多项式,先给出A,再给出B.每行的 ...

  7. 美团CodeM资格赛第二题

    锦标赛 时间限制:1秒 空间限制:32768K 组委会正在为美团点评CodeM大赛的决赛设计新赛制.比赛有 n 个人参加(其中 n 为2的幂),每个参赛者根据资格赛和预赛.复赛的成绩,会有不同的积分. ...

  8. CodeForces 348D Turtles(LGV定理)题解

    题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种 思路:LGV定理模板.但是定理中只能从n个不同起点走向n个不同终点,那么需要转化.显然必有一只从1 ...

  9. 技术分享: Canvas 系列

    技术分享: Canvas 系列 SVG 导出 分享截图 加密水印 游戏 场馆图,选派选座 refs xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可 ...

  10. Windows 常用键盘快捷键:

    键盘快捷键 通过使用键盘快捷键可以节省时间. Windows 和 Mac 的键盘快捷键 在现代操作系统中和计算机软件程序中,键盘快捷键经常被使用. 使用键盘快捷键能帮您节省很多时间. 基本的快捷键 描 ...