二叉搜索树 [四边形不等式优化区间dp]

题目描述

有 \(n\) 个结点,第 \(i\) 个结点的权值为 \(i\) 。

你需要对它们进行一些操作并维护一些信息,因此,你需要对它们建立一棵二叉搜索树。在整个操作过程中,第i个点需要被操作 \(x_i\) 次,每次你需要从根结点一路走到第 \(i\) 个点,耗时为经过的结点数。最小化你的总耗时。

输入格式

第一行一个整数 \(n\) ,第二行 \(n\) 个整数 \(x_1\to x_n\)。

输出格式

一行一个整数表示答案。

样例

样例输入

5
8 2 1 4 3

样例输出

35

数据范围与提示

对于 \(10\%\) 的数据,\(n\leqslant 10\)。

对于 \(40\%\) 的数据,\(n\leqslant 300\)。

对于 \(70\%\) 的数据,\(n\leqslant 2000\)。

对于 \(100\%\) 的数据,\(n\leqslant 5000,1\leqslant x_i\leqslant 10^9\)。

提示:二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。

分析

第一眼看上去发现自己不会建二叉排序树了,直接写暴力……,仔细想一想,二叉排序树的性质就是左子树都比根小,右子树都比根大,那么就可以把大区间 \([L,R]\) 通过根节点 \(k\) 分成两部分,然后这里就是一个几乎是裸的区间 \(dp\) 的板子了。

在更新 \(f[i][j]\) 的时候,因为 \([i,j]\) 这一段之间的每个节点都要多经过一个节点,所以要加上整棵树的值,而这用前缀和就可以维护。完结!

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
using namespace std;
#define ll long long
const int maxn = 5e3+10;
ll f[maxn][maxn];
int g[maxn][maxn];
ll sum[maxn];
int a[maxn];
inline ll read(){//快读
ll s = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)){if(ch == '-')f = -1;ch = getchar();}
while(isdigit(ch)){s=s*10+ch-'0';ch = getchar();}
return s * f;
}
int main(){
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
ll n = read();
for(re int i = 1;i<=n;++i){//预处理
a[i] = read();
f[i][i] = a[i];//记录值
g[i][i] = i;//记录决策点(四边形不等式优化)
sum[i] = sum[i-1] + a[i];//前缀和
}
//以下是区间dp
for(re int l = n-1;l >= 1;--l){
for(re int r = l+1;r <= n;++r){
f[l][r] = 0x3f3f3f3f3f3f3f3f;//初始化极大值
for(int k=g[l][r-1];k<=g[l+1][r];++k){
if(f[l][r] > f[l][k-1] + f[k+1][r] + sum[r]-sum[l-1]){
f[l][r] = f[l][k-1] + f[k+1][r] + sum[r]-sum[l-1];//向上更新答案
g[l][r] = k;//记录决策点
}
}
}
}
printf("%lld\n",f[1][n]);//输出最后的答案
return 0;
}

二叉搜索树 [四边形不等式优化区间dp]的更多相关文章

  1. hdu 3480 Division(四边形不等式优化)

    Problem Description Little D is really interested in the theorem of sets recently. There’s a problem ...

  2. 剑指 Offer 33. 二叉搜索树的后序遍历序列

    剑指 Offer 33. 二叉搜索树的后序遍历序列 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 true,否则返回 false.假设输入的数组的任意两个数字都互不相同. ...

  3. 二叉搜索树TREE(线段树,区间DP)

    前言 线段树+区间DP题,线段树却不是优化DP的,是不是很意外? 题面 二叉搜索树是一种二叉树,每个节点都有一个权值,并且一个点的权值比其左子树里的点权值都大,比起右子树里的点权值都小. 一种朴素的向 ...

  4. 区间dp之四边形不等式优化详解及证明

    看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1] ...

  5. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  6. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

  7. CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】

    问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...

  8. 区间dp+四边形不等式优化

    区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...

  9. 【非原创】codeforces 1025D - Recovering BST【区间dp+二叉搜索树】

    题目:戳这里 题意:给一个不下降序列,有n个数.问能否构造一个二叉搜索树,满足父亲和儿子之间的gcd>1. 解题思路:其实这题就是构造个二叉搜索树,只不过多了个条件.主要得了解二叉搜索树的性质, ...

随机推荐

  1. Mnist手写数字识别 Tensorflow

    Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflo ...

  2. python多进程之multiprocessing

    什么是多进程? 简单的理解:单板上运行的一个程序就是一个进程.进程是操作系统分配资源的最小单位,不同的进程之间资源不共享,进程间通信需要使用特定的方式.python提供了自带的multiprocess ...

  3. sqlserver安装出现找不到数据库引擎错误

    sqlserver安装出现找不到数据库引擎错误 问题的解决 第一次安装SQL server,发现它较于Oracle,都有安装卸载十分麻烦的特点.刚开始安装,就让我频繁遇到这个“找不到数据库引擎”的错误 ...

  4. Unable to find a constructor that takes a String param or a valueOf() or fromString() method

    Unable to find a constructor that takes a String param or a valueOf() or fromString() method 最近在做服务的 ...

  5. sql 大小写查询 字符串替换 小写xx 改为大写XX

    --sql 大小写查询 select * from 表 where 字段 collate Chinese_PRC_CS_AS='xx' --替换 小写xx 改为大写XX update 表  set  ...

  6. DJANGO-天天生鲜项目从0到1-002-用户模块-注册

    本项目基于B站UP主‘神奇的老黄’的教学视频‘天天生鲜Django项目’,视频讲的非常好,推荐新手观看学习 https://www.bilibili.com/video/BV1vt41147K8?p= ...

  7. R语言 循环语句、分支语句和中止语句-控制流篇

    for 循环 用法 for (n in m) expr 若n在m中则运行 expr while 循环 用法 while (condition) expr 当符合condition时运行expr rep ...

  8. jQuery与javascript

    jQuery 是一个 JavaScript 库,jQuery 极大地简化了 JavaScript 编程. javaScript(js)和jQuery(jq) 都是找元素.操作元素 Dom操作的区别: ...

  9. 自定义bind

    Function.prototype.mybind = function (context, ...args1) { // 判断是否为函数 if (typeof this !== 'function' ...

  10. 油田问题 bfs

    #include<iostream> #include<stdio.h> #include<stdlib.h> #include<time.h> #in ...