Deep Learn I'm back.
Intorduction:
时隔好几个月,我准备重新进入Deep Learning 的领域。昨天和老师聊了很多,之前觉得我做的工作就是排列组合,在水论文,灌水。但老师却说:这也是为将来的研究打基础。 我想是这么个道理,科研这一块,写论文,发论文,画图等等细枝末节的工作都是需要经验积累的,一开始搞个大的,不现实,就算搞出来,其他细节工作没做好,影响整体质量,也白搭。
任何问题都要辩证地看。
之后老师给我讲了他的一个idea,几年前想的,时空序列方向,通过arrange不同时间维度组成tensor进行卷积,想法很新颖,我从未听说过,但据他说跑出来效果不好,可能调参没做好,后面事情就搁置了。我听到这个idea,欣喜若狂,又恍然大悟。这不就是Deep Learning 领域做research 的过程吗?
想出一个你认为绝妙的idea,实验验证- 不断打磨-不断验证 重复进行,最终要么出成果,要么变成垃圾扔掉。
Coding:
现在呢,对这个领域重拾了一些信心。越来越意识到,在Deep Learning 领域做research 重要的不是Idea 而是 Implementing ability. 说白了就是Coding 的能力。
面向对象要会,基本的编程思想得懂。python要学过,至少要看得懂别人的代码,就算看不懂,也得具备查阅资料把它看懂的能力。框架得熟悉(pytorch),这和python是一个道理。其中贯穿始终的是coding style。
我这几个月的coding 经历发现,很多beginner 包括我,写出来的代码都很烂,像上完厕所用过的纸。 根本没有复用性,没有鲁棒性。这一块想提高,一是去看代码规范的书,二是多做实战多看别人的代码,自己敲一遍,learn by doing。
我推荐的学习顺序是,先做实战,学到点皮毛,再去看书。有实践经验再看书,会有恍然大悟,茅塞顿开的感觉,你在实践中学到的规范会在书里以高观点的方式体现,诠释。相反,先看书再实践,就没有这样的效果了。只会云里雾里。
当然这一切都建立在你有一个comprehensive idea of deep learning( machine learning),这一方面推荐Andrew Ng 的课程。
Keep following:
基础都搭建好了,那每天就得follow 最新的资讯,看看title,abstract,实在懒看看图片也好。总之,follow领域内的热点,看看大家都在干什么。这一步能create new idea,也能enhance 对一些概念的理解,
看到好的文章,甚至能提升你的维度,以更高的观点俯视问题。这方面需要关注一些AI自媒体,我推荐的:@爱可可老师,机器之心等等。这些都能在一些网站上找到:国内有微博、微信公众号、知乎....国外就是reddit, twitter, medium......
Idea:
他们都说Idea是这个领域最不值钱的东西了,现在人人都有idea,就看谁能最快实现出来。所以我反复强调coding 能力,定期去跑跑demo 实现一个implementation有益科研之路。更何况coding是每个学计算机的人的看家本事,不论将来从事的方向如何,coding都是基本技能,在一个领域内锻炼出来的coding能力换一个领域也同样适用。即使换方向,你的学习速度也会比别人快很多。这大概就是transfer learning?
关于idea,有一篇文章写的相当 informative.我还没看完,但前几章让我受益匪浅。我意识到,好的idea也是排列组合,只不过他们站在更高,更深的维度上发现的。而不断挖掘深度,是我们一以贯之的使命。
如何在计算机应用领域寻找研究想法 - 钱志云的文章 - 知乎 https://zhuanlan.zhihu.com/p/341685279
Help:
学会寻求帮助,前提是保持humble。coding上,理论上总有牛人,他们懂的比你多,理解的深度比你深,他们的work会惊掉你的下巴。和他们学习,遇到问题向他们寻求帮助。我所认识的绝大多数人都很nice,不会嫌弃你的问题。我最开始做的时候,需要复现一段代码,当时代码跑不通,我去调,coding上遇到了好多问题,就是一位学长不停的指导我,恶补了很多知识,学到很多技巧,有时问他这段代码应该怎么写,他直接把代码敲好发我。其次应该多找老师帮忙,前提是老师人很好。一些研究上的事,一些郁闷的事情,都能和老师交流。我是间隔了快一个学期才去找老师聊聊,聊完后豁然开朗。后悔没有找点找他。当然了,和nice的人交往,自己也要足够nice。这一点至关重要。
最后一段话是写给自己的。出国只看重绩点,而在这个学校,等到考试周抱佛脚,也能有个不错的成绩。学校不卷,绩点不难刷。因此你有大把的时间来做其他事情。你的退路有很多。科研是你的一个爱好,和运动、弹吉他一般,但略高于他们。你会面临更大的困难,要付出更多的时间,精力。做研究不像上课,你面对的是未知的深渊,没有正确答案,没有人懂你的研究内容,你没有同学可以交流讨论。结果的正确性只能靠实验结果验证。突然有一天你脑袋里冒出一个你认为绝妙的idea,你为这个理论想到了完美的解释,根据你的解释,模型一定会work的非常好,经过几个月的实验验证,你怎么都调不好,performance越来越差,你会自我怀疑,妄自菲薄。习惯他,推倒重来。你舍不得,不甘心。但没有用。深渊没有感情,错了就得放弃。
但行好事,莫问前程。做pure researcher~
idea the content of cognition; the main thing you are thinking about More (Definitions, Synonyms, Translation)
Deep Learn I'm back.的更多相关文章
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- TensorFlow入门学习(让机器/算法帮助我们作出选择)
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量 ...
- ubuntu17.10 安装CUDA
1. 更新apt-get源列表 sudo apt-get update sudo apt-get upgrade 2. 添加驱动源 sudo add-apt-repository ppa:graphi ...
- keras_训练人脸识别模型心得
keras_cnn_实现人脸训练分类 废话不多扯,直接进入正题吧!今天在训练自己分割出来的图片,感觉效果挺不错的,所以在这分享一下心得,望入门的同孩采纳. 1.首先使用python OpenCV库里面 ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
随机推荐
- python学习之路 初识xml
import requests from xml.etree import ElementTree as ET r = requests.get('http://www.webxml.com.cn// ...
- 第七周jieba分词
import jieba txt = open("聊斋志异简写版.txt", "r", encoding='utf-8').read() words = jie ...
- 十、TestNG分组测试
使用 groups 属性 package com.lc.tesgFenZu; import org.testng.annotations.AfterGroups; import org.testng. ...
- css进阶 02-CSS布局
02-CSS布局 #前言 #常见的布局属性 (1)display 确定元素的显示类型: block:块级元素. inline:行内元素. inline-block:对外的表现是行内元素(不会独占一行) ...
- C#数据结构-赫夫曼树
什么是赫夫曼树? 赫夫曼树(Huffman Tree)是指给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小.哈夫曼树(也称为最优二叉树)是带权路径长度最短的树,权值较大的结点 ...
- 【Go语言绘图】图片添加文字(一)
前一篇讲解了利用gg包来进行图片旋转的操作,这一篇我们来看看怎么在图片上添加文字. 绘制纯色背景 首先,我们先绘制一个纯白色的背景,作为添加文字的背景板. package main import &q ...
- kepler.gl 2.4.0重要更新
1 简介 kepler.gl作为开源地理空间数据可视化神器,也一直处于活跃的迭代开发状态下.而在前不久,kepler.gl正式发布了其2.4.0版本,下面我们就来对其重要的新特性进行介绍: 图1 2 ...
- 【k8s实战一】Jenkins 部署应用到 Kubernetes
[k8s实战一]Jenkins 部署应用到 Kubernetes 01 本文主旨 目标是演示整个Jenkins从源码构建镜像到部署镜像到Kubernetes集群过程. 为了简化流程与容易重现文中效果, ...
- Java安全之Shiro 550反序列化漏洞分析
Java安全之Shiro 550反序列化漏洞分析 首发自安全客:Java安全之Shiro 550反序列化漏洞分析 0x00 前言 在近些时间基本都能在一些渗透或者是攻防演练中看到Shiro的身影,也是 ...
- .Net Core使用IdentityServer4
官方文档https://identityserver4.readthedocs.io/en/latest/ 参考https://www.cnblogs.com/i3yuan/p/13843082.ht ...