吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)-课程笔记
第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)
2.1 词汇表征(Word Representation)
词汇表示,目前为止一直都是用词汇表来表示词,上周提到的词汇表,可能是 10000 个单词,我们一直用 one-hot 向量来表示词。这种表示方法的一大缺点就是它把每个词孤立起来,这样使得算法对相关词的泛化能力不强。
换一种表示方式会更好,如果不用 one-hot 表示,而是用特征化的表示来表示每个词,man,woman,king,queen,apple,orange 或者词典里的任何一个单词,我们学习这些词的特征或者数值。

举个例子,对于这些词,比如想知道这些词与 Gender(性别)的关系。假定男性的性别为-1,女性的性别为+1,那么 man 的性别值可能就是-1,而 woman 就是-1。最终根据经验 king 就是-0.95,queen 是+0.97,apple 和 orange 没有性别可言。
我们假设有 300 个不同的特征,这样的话就有了这一列数字(上图编号 1 所示),这里只写了 4 个,实际上是 300 个数字,这样就组成 了一个 300 维的向量来表示 man 这个词。接下来,我想用$
吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)-课程笔记的更多相关文章
- 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记
第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...
- 吴恩达《深度学习》-课后测验-第五门课 序列模型(Sequence Models)-Week 2: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入)
Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn ...
- 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第三周 序列模型和注意力机制(Sequence models & Attention mechanism)-课程笔记
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence ...
- 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
随机推荐
- Linux下如何高效切换目录?
Linux 下对于目录的切换,大家肯定会想到一个命令:cd 命令.这个是 Linux 下再基本不过的命令,如果这个命令都不知道的话,赶紧剖腹自尽去吧. cd 命令确实很方便,但如果需要频繁在下面的目录 ...
- Android java.lang.SecurityException: Permission Denial
报错: java.lang.SecurityException: Permission Denial: starting Intent { act=android.media.action.IMAGE ...
- day33:进程II
目录 1.锁:Lock 2.信号量:Semaphone 3.事件:Event 4.进程队列:Queue 5.生产者和消费者模型 6.JoinableQueue 锁:Lock 1.锁的基本概念 上锁和解 ...
- SpringBoot 集成SpringSecurity JWT
目录 1. 简介 1.1 SpringSecurity 1.2 OAuth2 1.3 JWT 2. SpringBoot 集成 SpringSecurity 2.1 导入Spring Security ...
- springboot-遇到的错误
1.Field userMapper in com.yanan.outjob.controller.SysUserController required a bean of type 'com.yan ...
- StructuredStreaming编程模型
StructuredStreaming编程模型 基本概念 ◆ Time ◆ Trigger ◆ Input ◆ Query ◆ Result ◆ Output 案例模型:实时处理流单词统计编程模型 ...
- 操作系统-I/O(6)I/O与系统调用
所有高级语言的运行时(runtime)都提供了执行I/O功能的机制. 例如,C语言中提供了包含像printf()和scanf()等这样的标准I/O库函数, C++语言中提供了如 <<和&g ...
- 牛客网PAT练兵场-组个最小数
题解:从小到大输出 题目地址:https://www.nowcoder.com/questionTerminal/86ede762b450404dbab59352963378e9 /** * *作者: ...
- 关于bat批处理的一些操作,如启动jar 关闭进程等
先说一下学习这个的前提: 公司要写个生成uid的工具,整完了之后就又整批处理工具,出于此目的,也是为了丰富自己的知识,就学习了一下,下面是相关的批处理脚本 我花了半天的时间找了相关的bat批处理,但是 ...
- okhttp3 示例
1.GET请求 private fun httpGetDemo() { //1.请求参数 val url = httpHost + "/api/test?arg1=xxx" //2 ...