第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)

2.1 词汇表征(Word Representation)

词汇表示,目前为止一直都是用词汇表来表示词,上周提到的词汇表,可能是 10000 个单词,我们一直用 one-hot 向量来表示词。这种表示方法的一大缺点就是它把每个词孤立起来,这样使得算法对相关词的泛化能力不强。

换一种表示方式会更好,如果不用 one-hot 表示,而是用特征化的表示来表示每个词,man,woman,king,queen,apple,orange 或者词典里的任何一个单词,我们学习这些词的特征或者数值。

举个例子,对于这些词,比如想知道这些词与 Gender(性别)的关系。假定男性的性别为-1,女性的性别为+1,那么 man 的性别值可能就是-1,而 woman 就是-1。最终根据经验 king 就是-0.95,queen 是+0.97,apple 和 orange 没有性别可言。

我们假设有 300 个不同的特征,这样的话就有了这一列数字(上图编号 1 所示),这里只写了 4 个,实际上是 300 个数字,这样就组成 了一个 300 维的向量来表示 man 这个词。接下来,我想用$

吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)-课程笔记的更多相关文章

  1. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记

    第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...

  2. 吴恩达《深度学习》-课后测验-第五门课 序列模型(Sequence Models)-Week 2: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入)

    Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn ...

  3. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第三周 序列模型和注意力机制(Sequence models & Attention mechanism)-课程笔记

    第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence ...

  4. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  5. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  6. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  7. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  8. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  9. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

随机推荐

  1. 如何通过命令行简单的执行C程序

    如何通过命令行简单的执行C语言编写的程序 ​ 首先,我们知道C语言程序都是以xxx.c结尾的,这在Windows系统和Linux系统都是一样的.其次,C程序的执行过程为四步:预处理--编译--汇编-- ...

  2. idea的热加载与热部署

    一:热加载与热部署     热部署的意思就是不用手动重启环境,修改类后,项目会自动重启.但是如果项目比较大,重启也需要耗时十几秒左右.     热加载意为不需要重新启动,修改了什么文件就重新加载什么文 ...

  3. mac 安卓生成证书(uniapp项目安卓证书申请)

    mac  安卓生成证书 义务需求: 最近在开发基于uniapp框架的app,到了打包发布的阶段,来尝试打包为安卓的apk安装包.在用HBuild打包的时候需要提供安卓的数字证书(.keystore 文 ...

  4. 【算法•日更•第四十二期】离散傅里叶变换(DFT)

    ▎前言 小编相当的菜,这篇博客难度稍高,所以有些可能不会带有证明,博客中更多的是定义. 我们将要学到的东西: 复数 暴力多项式乘法 DFT 当然,小编之前就已经写过一篇博客了,主要讲的就是基础多项式, ...

  5. eric4 打包文件

    在.py 工程 所在目录: 按住shift,鼠标右键,在此处打开cmd或shell,然后如下操作 1.打包成文件夹 pyinstaller lrs.py 2.打包成 单文件 pyinstaller - ...

  6. 【全解】Eclipse添加Spring项目插件

    1.Eclipse打开window-preference-InstallNewSoftware 2.先点Manage,取消掉The Eclipse Project Updates 3.选择Add . ...

  7. TS数据流PAT和PMT分析

    TS流,是基于packet的位流格式,每个packet是188个字节或者204个字节(一般是188字节,204字节格式是在188字节的packet后面加上16字节的CRC数据,其他格式相同),解析TS ...

  8. nova 通过 python curl 创建虚拟机---keystone v2

    #! /bin/python #coding=utf- import urllib2 import json import requests # token post_url = 'http://12 ...

  9. Vue源码分析之实现一个简易版的Vue

    目标 参考 https://cn.vuejs.org/v2/guide/reactivity.html 使用 Typescript 编写简易版的 vue 实现数据的响应式和基本的视图渲染,以及双向绑定 ...

  10. python - Lambda函数 匿名函数

    Lambda 匿名函数 python 使用 lambda 来创建匿名函数. lambda只是一个表达式,函数体比def简单很多. lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda ...