BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ1297
题意概括
有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。 现在给出该有向图,问总共有多少种不同的路径吗? 注意:不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
题解
矩阵乘法。
把一个点拆成9个,分别是time+0,time+1,time+2,...,time+8。
然后根据输入转移,构建矩阵即可。
然后基础矩阵跑一跑就可以了。
插曲
悲催,一个小错找了1个小时:
把设置单位矩阵打成这样了……
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=10+5,maxm=N*10,mod=2009;
int n,m,t;
char str[N][N];
struct Mat{
int v[maxm][maxm];
void set(){
memset(v,0,sizeof v);
}
void set1(){
set();
for (int i=0;i<m;i++)
v[i][i]=1;
}
Mat operator * (Mat a){
Mat ans;
ans.set();
for (int i=0;i<m;i++)
for (int j=0;j<m;j++)
for (int k=0;k<m;k++)
ans.v[i][j]=(ans.v[i][j]+v[i][k]*a.v[k][j])%mod;
return ans;
}
}M,Mans;
Mat MatPow(Mat x,int y){
Mat M,xx=x;
M.set1();
while (y){
if (y&1)
M=M*xx;
xx=xx*xx;
y>>=1;
}
return M;
}
int Hash(int x,int y){
return x*9+y;
}
int main(){
scanf("%d%d",&n,&t);
m=n*9;
for (int i=0;i<n;i++)
scanf("%s",str[i]);
M.set();
for (int i=0;i<n;i++)
for (int j=0;j<8;j++)
M.v[Hash(i,j+1)][Hash(i,j)]++;
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
if (str[i][j]!='0')
M.v[Hash(i,0)][Hash(j,str[i][j]-'1')]++;
Mans=MatPow(M,t);
printf("%d",Mans.v[0][Hash(n-1,0)]);
return 0;
}
BZOJ1297 [SCOI2009]迷路 矩阵乘法的更多相关文章
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- 【bzoj1297】[SCOI2009]迷路 矩阵乘法
题目描述 给出一个 $n$ 个点的有向图,每条边的权值都在 $[1,9]$ 之间.给出 $t$ ,求从 $1$ 到 $n$ ,经过路径边权和恰好为 $t$ 的方案数模2009. 输入 第一行包含两个整 ...
- [luogu4159 SCOI2009] 迷路(矩阵乘法)
传送门 Solution 矩阵乘法新姿势qwq 我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数 那么对于边权很小的时候,我们可以将每个点都拆成若干个点 然后就将边权不为1转化为边权为1了 ...
- LUOGU P4159 [SCOI2009]迷路(矩阵乘法)
传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [SCOI2009]迷路(矩阵快速幂) 题解
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】
题目 windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意: ...
随机推荐
- POJ3304 Segments 【线段直线相交】
题意: 给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!. 思路: 计算几何.这道题要思考到两点: 1:把问题转化为是否存在一条直线 ...
- [转]xargs命令详解,xargs与管道的区别
为什么要用xargs,问题的来源 在工作中经常会接触到xargs命令,特别是在别人写的脚本里面也经常会遇到,但是却很容易与管道搞混淆,本篇会详细讲解到底什么是xargs命令,为什么要用xargs命令以 ...
- oc语言中的构造方法
一 构造方法的调用 完整的创建一个可用的对象:Person *p=[Person new]; New方法的内部会分别调用两个方法来完成2件事情,1)使用alloc方法来分配存储空间(返回分配的对象): ...
- 使用Groovy的mixin方法注入,和mixedIn属性实现过滤链
mixin方法注入不多说,这里只是用这个属性搞一个过滤器链的功能 假设我现在有个方法,输入一个字符串,然后需求提出需要进行大写转换输出, 过了一天又要加个前缀,再过了一天,需要把一些字符过滤掉.... ...
- C++ 字符串的编码
转载链接:https://www.cnblogs.com/akb48/p/5439154.html windows平台 char 表示单字符,占用一个字节 wchar_t 表示宽字符,占用两个字节 L ...
- UML和模式应用2: 迭代、进化和敏捷
1.前言 本章主要介绍迭代.敏捷开发及UP(统一过程)的基本概念 2.基本术语 Items Note 软件开发过程 描述了构造.部署及维护软件的方式 迭代开发 是一种软件开发过程的生命周期模型,依赖短 ...
- ubuntu 删除自带软件的方法
$ sudo dpkg -l | grep -i "need2del" $ sudo dpkg -P 或者: $ sudo apt-get --purge remove need2 ...
- STOMP Over WebSocket
Show Table of Contents What is STOMP? STOMP is a simple text-orientated messaging protocol. It defin ...
- insmod 时报错“Unknown symbol”问题的解决
在加载驱动模块时报错: “ Unknown symbol CFG80211_SupBandReInit (err 0)” 查看了内核代码以及加载上的symbol(命令为 cat /proc/kalls ...
- Qt Excel
在pro文件添加 QT +=axcontainer 头文件 #include <QAxObject> void MainWindow::on_btnSelectFileDialog_cli ...