【Java】 剑指offer(62) 圆圈中最后剩下的数字
本文参考自《剑指offer》一书,代码采用Java语言。
题目
0, 1, …, n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。
思路
方法一:采用链表来存放数据,每次对长度取余来实现循环
将所有数字放入LinkedList链表中(LinkedList比ArrayList更适合增删操作)。假设当前删除的结点下标为removeIndex,则下一个要删除的结点的下标为:(removeIndex+m-1)%list.size(),通过取余符号可以实现类型循环的操作。
注:没必要用循环链表,反而会更麻烦了。
方法二:数学推导规律
n个数字的圆圈,不断删除第m个数字,我们把最后剩下的数字记为f(n,m)。
n个数字中第一个被删除的数字是(m-1)%n, 我们记作k,k=(m-1)%n。
那么剩下的n-1个数字就变成了:0,1,……k-1,k+1,……,n-1,我们把下一轮第一个数字排在最前面,并且将这个长度为n-1的数组映射到0~n-2。
原始数字:k+1,……, n-1, 0, 1,……k-1
映射数字:0 ,……,n-k-2, n-k-1, n-k,……n-2
把映射数字记为x,原始数字记为y,那么映射数字变回原始数字的公式为 y=(x+k+1)%n。
在映射数字中,n-1个数字,不断删除第m个数字,由定义可以知道,最后剩下的数字为f(n-1,m)。我们把它变回原始数字,由上一个公式可以得到最后剩下的原始数字是(f(n-1,m)+k+1)%n,而这个数字就是也就是一开始我们标记为的f(n,m),所以可以推得递归公式如下:
f(n,m) =(f(n-1,m)+k+1)%n
将k=(m-1)%n代入,化简得到:
f(n,m) =(f(n-1,m)+m)%n
f(1,m) = 0
代码中可以采用循环或者递归的方法实现该递归公式。时间复杂度为O(n),空间复杂度为O(1)。
测试算例
1.功能测试(m大于/小于/等于n)
2.特殊测试(n、m<=0)
3.性能测试(n=4000,n=997)
Java代码
//题目:0, 1, …, n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里
//删除第m个数字。求出这个圆圈里剩下的最后一个数字。 public class LastNumberInCircle {
/*
* 方法一:采用推导出来的方法
*/
public int LastRemaining_Solution(int n, int m) {
if(n<1 || m<1)
return -1; //出错
int last=0;
for(int i=2;i<=n;i++){
last=(last+m)% i; //这里是i不是n!!!
}
return last;
} /*
* 方法二:采用链表来存放,每次对长度取余来实现循环
*/
public int LastRemaining_Solution2(int n, int m) {
if(n<1 || m<1)
return -1; //出错
LinkedList<Integer> list = new LinkedList<Integer>();
for(int i=0;i<n;i++)
list.add(i);
int removeIndex=0;
while(list.size()>1){
removeIndex=(removeIndex+m-1)%list.size();
list.remove(removeIndex);
}
return list.getFirst();
}
}
收获
1.对于下标循环一圈类似的问题,通过%可以很好地实现循环,而不需要我们自己构造循环链表;
2.(a%n+b)%n=(a+b)%n
3.尽量学会本题的数学方法,特别是要掌握好数字间映射的方法。
4.公式法中,last=(last+m)% i;
//这里是i不是n!!!
【Java】 剑指offer(62) 圆圈中最后剩下的数字的更多相关文章
- 剑指 Offer 62. 圆圈中最后剩下的数字 + 约瑟夫环问题
剑指 Offer 62. 圆圈中最后剩下的数字 Offer_62 题目描述 方法一:使用链表模拟 这种方法是暴力方法,时间复杂度为O(nm),在本题中数据量过大会超时. 方法二:递归方法 packag ...
- [剑指offer]62.圆圈中最后剩下的数字
62.圆圈中最后剩下的数字 题目 0,1,...,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成 ...
- 【剑指offer】圆圈中最后剩下的数字(约瑟夫问题),C++实现
原创博文,转载请注明出处! # 题目 # 思路 本题即为典型的约瑟夫问题,通过递推公式倒推出问题的解.原始问题是从n个人中每隔m个数踢出一个人,原始问题变成从n-1个人中每隔m个数踢出一个人-- ...
- 剑指offer——72圆圈中最后剩下的数字
题目描述 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随机指 ...
- 剑指offer46:圆圈中最后剩下的数字(链表,递归)
1 题目描述 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随 ...
- Java实现 LeetCode 面试题62. 圆圈中最后剩下的数字(约瑟夫环)
面试题62. 圆圈中最后剩下的数字 0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成一个圆 ...
- 【LeetCode】面试题62. 圆圈中最后剩下的数字
题目:面试题62. 圆圈中最后剩下的数字 这题很有意思,也很巧妙,故记录下来. 官方题解思路,是约瑟夫环的数学解法: 我们将上述问题建模为函数 f(n, m),该函数的返回值为最终留下的元素的序号. ...
- 《剑指offer》面试题62. 圆圈中最后剩下的数字
问题描述 0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成一个圆圈,从数字0开始每次删除第 ...
- [LeetCode]面试题62. 圆圈中最后剩下的数字(数学)
题目 0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成一个圆圈,从数字0开始每次删除第3 ...
随机推荐
- 给bootstrap table设置行列单元格样式
1.根据单元格或者行内其他单元格的内容,给该单元格设置一定的css样式 columns: [{ field: 'index', title: '序号', align:"center" ...
- Mybatis进阶学习笔记——动态代理方式开发Dao接口、Dao层(推荐第二种)
1.原始方法开发Dao Dao接口 package cn.sm1234.dao; import java.util.List; import cn.sm1234.domain.Customer; pu ...
- 2018-2019-2 网络对抗技术 20165320 Exp1 PC平台逆向破解
学到的新知识总结 管道:符号为| 前一个进程的输出直接作为后一个进程的输入 输出重定向:符号为> 将内容定向输入到文件中 perl:一门解释性语言,不需要预编译,直接在命令行中使用.常与输出重定 ...
- Spring-boot:快速搭建微框架服务
前言: Spring Boot是为了简化Spring应用的创建.运行.调试.部署等而出现的,使用它可以做到专注于Spring应用的开发,而无需过多关注XML的配置. 简单来说,它提供了一堆依赖打包,并 ...
- HDFS安全模式
用户可以通过dfsadmin -safemode value 来操作安全模式,参数value的说明如下: enter - 进入安全模式 leave - 强制NameNode离开安全模式 get - 返 ...
- u盘的一些理解
U盘是由主控板+FLASH+外壳组成的,当主控板焊接上空白FLASH后插入电脑,因为没有相应的数据, 量产工具 电脑只能识别到主控板,而无法识别到FLASH,所以这时候电脑上显示出U盘盘符,但是双击 ...
- llinux除了软连接本地文件夹同步:mount
mount --bind /srv/dir1 /srv/dir2dir1:被共享的文件夹dir2:需要同步的文件夹
- oracle 监听 添加ip
同时修改tnsnames.ora.listener.ora将这两个文件中HOST后面的主机都修改为127.0.0.1然后重启OracleServiceXE.OracleXETNSListener服务 ...
- Python-百度经纬度转高德经纬度
import math def bdToGaoDe(lon,lat): """ 百度坐标转高德坐标 :param lon: :param lat: :return: &q ...
- dell R720服务器设置开机启动顺序
开机按F2进入系统启动设置,也可以按F11进入快速启动配置