Flink - FlinkKafkaProducer010
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/connectors/kafka.html
使用的方式,
DataStream<String> stream = ...; FlinkKafkaProducer010Configuration myProducerConfig = FlinkKafkaProducer010.writeToKafkaWithTimestamps(
stream, // input stream
"my-topic", // target topic
new SimpleStringSchema(), // serialization schema
properties); // custom configuration for KafkaProducer (including broker list) // the following is necessary for at-least-once delivery guarantee
myProducerConfig.setLogFailuresOnly(false); // "false" by default
myProducerConfig.setFlushOnCheckpoint(true); // "false" by default
Besides enabling Flink’s checkpointing, you should also configure the setter methods setLogFailuresOnly(boolean)
andsetFlushOnCheckpoint(boolean)
appropriately, as shown in the above examples in the previous section:
setLogFailuresOnly(boolean)
: enabling this will let the producer log failures only instead of catching and rethrowing them. This essentially accounts the record to have succeeded, even if it was never written to the target Kafka topic. This must be disabled for at-least-once.setFlushOnCheckpoint(boolean)
: with this enabled, Flink’s checkpoints will wait for any on-the-fly records at the time of the checkpoint to be acknowledged by Kafka before succeeding the checkpoint. This ensures that all records before the checkpoint have been written to Kafka. This must be enabled for at-least-once.
Note: By default, the number of retries is set to “0”. This means that when setLogFailuresOnly
is set to false
, the producer fails immediately on errors, including leader changes. The value is set to “0” by default to avoid duplicate messages in the target topic that are caused by retries. For most production environments with frequent broker changes, we recommend setting the number of retries to a higher value.
setLogFailuresOnly
,如果true,发送kafka失败时,只是log,不会中断执行,这样可能丢数据
如果false,发送kafka失败时,抛异常,这样job会restart,不会丢数据,但是会中断执行;这里最好把produer的retires设成3,这样避免kafka临时不可用导致job中断,比如leader切换
setFlushOnCheckpoint
,如果true,在做checkpoint的时候,会等待所有pending的record被发送成功,这样保证数据不丢
首先FlinkKafkaProducer010是一种sink,
一般的使用方式是,steam.addSink(RichSinkFunction)
public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) {
this.transformation.getOutputType();
if(sinkFunction instanceof InputTypeConfigurable) {
((InputTypeConfigurable)sinkFunction).setInputType(this.getType(), this.getExecutionConfig());
} StreamSink sinkOperator = new StreamSink((SinkFunction)this.clean(sinkFunction));
DataStreamSink sink = new DataStreamSink(this, sinkOperator);
this.getExecutionEnvironment().addOperator(sink.getTransformation());
return sink;
}
这里用FlinkKafkaProducer010.writeToKafkaWithTimestamps封装这部分,比较tricky
/**
* Creates a FlinkKafkaProducer for a given topic. The sink produces a DataStream to
* the topic.
*
* This constructor allows writing timestamps to Kafka, it follow approach (b) (see above)
*
* @param inStream The stream to write to Kafka
* @param topicId The name of the target topic
* @param serializationSchema A serializable serialization schema for turning user objects into a kafka-consumable byte[] supporting key/value messages
* @param producerConfig Configuration properties for the KafkaProducer. 'bootstrap.servers.' is the only required argument.
* @param customPartitioner A serializable partitioner for assigning messages to Kafka partitions.
*/
public static <T> FlinkKafkaProducer010Configuration<T> writeToKafkaWithTimestamps(DataStream<T> inStream,
String topicId,
KeyedSerializationSchema<T> serializationSchema,
Properties producerConfig,
KafkaPartitioner<T> customPartitioner) { GenericTypeInfo<Object> objectTypeInfo = new GenericTypeInfo<>(Object.class);
FlinkKafkaProducer010<T> kafkaProducer = new FlinkKafkaProducer010<>(topicId, serializationSchema, producerConfig, customPartitioner);
SingleOutputStreamOperator<Object> transformation = inStream.transform("FlinKafkaProducer 0.10.x", objectTypeInfo, kafkaProducer);
return new FlinkKafkaProducer010Configuration<>(transformation, kafkaProducer);
}
可以看到这里实现了addSink的逻辑,返回FlinkKafkaProducer010Configuration,其实就是DataStreamSink
public static class FlinkKafkaProducer010Configuration<T> extends DataStreamSink<T> { private final FlinkKafkaProducerBase wrappedProducerBase;
private final FlinkKafkaProducer010 producer; private FlinkKafkaProducer010Configuration(DataStream stream, FlinkKafkaProducer010<T> producer) {
//noinspection unchecked
super(stream, producer);
this.producer = producer;
this.wrappedProducerBase = (FlinkKafkaProducerBase) producer.userFunction;
}
关键是FlinkKafkaProducer010扩展StreamSink并重写
processElement
public class FlinkKafkaProducer010<T> extends StreamSink<T> implements SinkFunction<T>, RichFunction { public FlinkKafkaProducer010(String topicId, KeyedSerializationSchema<T> serializationSchema, Properties producerConfig, KafkaPartitioner<T> customPartitioner) {
// We create a Kafka 09 producer instance here and only "override" (by intercepting) the
// invoke call.
super(new FlinkKafkaProducer09<>(topicId, serializationSchema, producerConfig, customPartitioner)); } @Override
public void processElement(StreamRecord<T> element) throws Exception {
invokeInternal(element.getValue(), element.getTimestamp());
}
StreamSink中processElement是这样实现的,
public class StreamSink<IN> extends AbstractUdfStreamOperator<Object, SinkFunction<IN>>
implements OneInputStreamOperator<IN, Object> { @Override
public void processElement(StreamRecord<IN> element) throws Exception {
userFunction.invoke(element.getValue());
}
可以看到FlinkKafkaProducer010绕开了对SinkFunction的调用,直接调用invokeInternal
所以SinkFunction的实现是无用的,不会被调用到
public void invoke(T value) throws Exception {
invokeInternal(value, Long.MAX_VALUE);
}
invokeInternal
private void invokeInternal(T next, long elementTimestamp) throws Exception { final FlinkKafkaProducerBase<T> internalProducer = (FlinkKafkaProducerBase<T>) userFunction; internalProducer.checkErroneous(); byte[] serializedKey = internalProducer.schema.serializeKey(next);
byte[] serializedValue = internalProducer.schema.serializeValue(next);
String targetTopic = internalProducer.schema.getTargetTopic(next);
if (targetTopic == null) {
targetTopic = internalProducer.defaultTopicId;
} Long timestamp = null;
if(this.writeTimestampToKafka) {
timestamp = elementTimestamp;
} ProducerRecord<byte[], byte[]> record;
if (internalProducer.partitioner == null) {
record = new ProducerRecord<>(targetTopic, null, timestamp, serializedKey, serializedValue);
} else {
record = new ProducerRecord<>(targetTopic, internalProducer.partitioner.partition(next, serializedKey, serializedValue, internalProducer.partitions.length), timestamp, serializedKey, serializedValue);
}
if (internalProducer.flushOnCheckpoint) {
synchronized (internalProducer.pendingRecordsLock) {
internalProducer.pendingRecords++; // 如果flushOnCheckpoint打开,需要记录正在发送的record数目
}
}
internalProducer.producer.send(record, internalProducer.callback);
}
代码很容易理解,正常的producer发送流程,
除了,
internalProducer.checkErroneous();
internalProducer.callback
internalProducer.callback是用来处理kafka返回的ack的
FlinkKafkaProducerBase
@Override
public void open(Configuration configuration) {if (logFailuresOnly) {
callback = new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e != null) {
LOG.error("Error while sending record to Kafka: " + e.getMessage(), e);
}
acknowledgeMessage();
}
};
}
else {
callback = new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null && asyncException == null) {
asyncException = exception;
}
acknowledgeMessage();
}
};
}
}
可以看到logFailuresOnly是true的时候,对于Exception只是,log
如果是false,就会记录下这个Exception到asyncException
acknowledgeMessage,无论是否有错都需要ack
private void acknowledgeMessage() {
if (flushOnCheckpoint) {
synchronized (pendingRecordsLock) {
pendingRecords--;
if (pendingRecords == 0) {
pendingRecordsLock.notifyAll();
}
}
}
}
逻辑就是计数--,如果pendingRecords == 0,即没有正在发送的record,通知所有在等锁的
checkErroneous()
protected void checkErroneous() throws Exception {
Exception e = asyncException;
if (e != null) {
// prevent double throwing
asyncException = null;
throw new Exception("Failed to send data to Kafka: " + e.getMessage(), e);
}
}
就是把asyncException里面的异常抛出去
Flink - FlinkKafkaProducer010的更多相关文章
- flink引出的kafka不同版本的兼容性
参考: 官网协议介绍:http://kafka.apache.org/protocol.html#The_Messages_Fetch kafka协议兼容性 http://www.cnblogs.c ...
- Kafka设计解析(二十)Apache Flink Kafka consumer
转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flin ...
- 【译】Apache Flink Kafka consumer
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义. ...
- flink统计根据账号每30秒 金额的平均值
package com.zetyun.streaming.flink; import org.apache.flink.api.common.functions.MapFunction;import ...
- FLINK流计算拓扑任务代码分析<一>
我打算以 flink 官方的 例子 <<Monitoring the Wikipedia Edit Stream>> 作为示例,进行 flink 流计算任务 的源码解析说明. ...
- Flink Flow
1. Create environment for stream computing StreamExecutionEnvironment env = StreamExecutionEnvironme ...
- Flink学习笔记:Connectors之kafka
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...
- 关于flink的时间处理不正确的现象复现&原因分析
跟朋友聊天,说输出的时间不对,之前测试没关注到这个,然后就在processing模式下看了下,发现时间确实不正确 然后就debug,看问题在哪,最终分析出了原因,记录如下: 最下面给出了复现方案 ...
- Flink实战(八) - Streaming Connectors 编程
1 概览 1.1 预定义的源和接收器 Flink内置了一些基本数据源和接收器,并且始终可用.该预定义的数据源包括文件,目录和插socket,并从集合和迭代器摄取数据.该预定义的数据接收器支持写入文件和 ...
随机推荐
- [转]对form:input标签中的数字进行格式化
原文地址:https://blog.csdn.net/qq_29662201/article/details/80708373 数字进行格式化(保留2位小数) 单独使用<fmt:formatNu ...
- Fixed Partition Memory Management UVALive - 2238 建图很巧妙 km算法左右顶点个数不等模板以及需要注意的问题 求最小权匹配
/** 题目: Fixed Partition Memory Management UVALive - 2238 链接:https://vjudge.net/problem/UVALive-2238 ...
- 安卓程序代写 网上程序代写[原]Android中的回调Callback
回调就是外部设置一个方法给一个对象, 这个对象可以执行外部设置的方法, 通常这个方法是定义在接口中的抽象方法, 外部设置的时候直接设置这个接口对象即可. 1. 如何定义一个回调 a. 定义接口 : 在 ...
- Why you should use async tasks in .NET 4.5 and Entity Framework 6
Improve response times and handle more users with parallel processing Building a web application usi ...
- ubuntu GCC 版本切换
(1) 查看gcc以及g++的版本 gcc -v g++ -v star@ai:~ $ gcc -v Using built-in specs. COLLECT_GCC=gcc COLLECT_L ...
- 教程:SpagoBI开源商业智能之XML Template 图表模板
SpagoBI offers a variety of widgets' examples realized with the Highcharts library, that can be divi ...
- Java之CountDownLatch使用
CountDownLatch,一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. 主要方法 public CountDownLatch(int count); pu ...
- Dapper的基本使用,Insert、Update、Select、Delete
简介 Dapper是.NET下一个micro的ORM,它和Entity Framework或Nhibnate不同,属于轻量级的,并且是半自动的.也就是说实体类都要自己写.它没有复杂的配置文件,一个单文 ...
- [React] 13 - Redux: react-redux
Ref: Redux 入门教程(三):React-Redux 的用法 组件拆分规范 使用 React-Redux,需要掌握额外的 API,并且要遵守它的组件拆分规范. React-Redux 将所有组 ...
- [Linux] ssh-key 公钥文件格式
SSH 协议(Secure Shell 协议)最初在 1995 年由芬兰的 Tatu Ylönen 设计开发,由 IETF(Internet Engineering Task Force)的网络工作小 ...