Flink - FlinkKafkaProducer010
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/connectors/kafka.html
使用的方式,
DataStream<String> stream = ...; FlinkKafkaProducer010Configuration myProducerConfig = FlinkKafkaProducer010.writeToKafkaWithTimestamps(
stream, // input stream
"my-topic", // target topic
new SimpleStringSchema(), // serialization schema
properties); // custom configuration for KafkaProducer (including broker list) // the following is necessary for at-least-once delivery guarantee
myProducerConfig.setLogFailuresOnly(false); // "false" by default
myProducerConfig.setFlushOnCheckpoint(true); // "false" by default
Besides enabling Flink’s checkpointing, you should also configure the setter methods setLogFailuresOnly(boolean) andsetFlushOnCheckpoint(boolean) appropriately, as shown in the above examples in the previous section:
setLogFailuresOnly(boolean): enabling this will let the producer log failures only instead of catching and rethrowing them. This essentially accounts the record to have succeeded, even if it was never written to the target Kafka topic. This must be disabled for at-least-once.setFlushOnCheckpoint(boolean): with this enabled, Flink’s checkpoints will wait for any on-the-fly records at the time of the checkpoint to be acknowledged by Kafka before succeeding the checkpoint. This ensures that all records before the checkpoint have been written to Kafka. This must be enabled for at-least-once.
Note: By default, the number of retries is set to “0”. This means that when setLogFailuresOnly is set to false, the producer fails immediately on errors, including leader changes. The value is set to “0” by default to avoid duplicate messages in the target topic that are caused by retries. For most production environments with frequent broker changes, we recommend setting the number of retries to a higher value.
setLogFailuresOnly,如果true,发送kafka失败时,只是log,不会中断执行,这样可能丢数据
如果false,发送kafka失败时,抛异常,这样job会restart,不会丢数据,但是会中断执行;这里最好把produer的retires设成3,这样避免kafka临时不可用导致job中断,比如leader切换
setFlushOnCheckpoint,如果true,在做checkpoint的时候,会等待所有pending的record被发送成功,这样保证数据不丢
首先FlinkKafkaProducer010是一种sink,
一般的使用方式是,steam.addSink(RichSinkFunction)
public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) {
this.transformation.getOutputType();
if(sinkFunction instanceof InputTypeConfigurable) {
((InputTypeConfigurable)sinkFunction).setInputType(this.getType(), this.getExecutionConfig());
}
StreamSink sinkOperator = new StreamSink((SinkFunction)this.clean(sinkFunction));
DataStreamSink sink = new DataStreamSink(this, sinkOperator);
this.getExecutionEnvironment().addOperator(sink.getTransformation());
return sink;
}
这里用FlinkKafkaProducer010.writeToKafkaWithTimestamps封装这部分,比较tricky
/**
* Creates a FlinkKafkaProducer for a given topic. The sink produces a DataStream to
* the topic.
*
* This constructor allows writing timestamps to Kafka, it follow approach (b) (see above)
*
* @param inStream The stream to write to Kafka
* @param topicId The name of the target topic
* @param serializationSchema A serializable serialization schema for turning user objects into a kafka-consumable byte[] supporting key/value messages
* @param producerConfig Configuration properties for the KafkaProducer. 'bootstrap.servers.' is the only required argument.
* @param customPartitioner A serializable partitioner for assigning messages to Kafka partitions.
*/
public static <T> FlinkKafkaProducer010Configuration<T> writeToKafkaWithTimestamps(DataStream<T> inStream,
String topicId,
KeyedSerializationSchema<T> serializationSchema,
Properties producerConfig,
KafkaPartitioner<T> customPartitioner) { GenericTypeInfo<Object> objectTypeInfo = new GenericTypeInfo<>(Object.class);
FlinkKafkaProducer010<T> kafkaProducer = new FlinkKafkaProducer010<>(topicId, serializationSchema, producerConfig, customPartitioner);
SingleOutputStreamOperator<Object> transformation = inStream.transform("FlinKafkaProducer 0.10.x", objectTypeInfo, kafkaProducer);
return new FlinkKafkaProducer010Configuration<>(transformation, kafkaProducer);
}
可以看到这里实现了addSink的逻辑,返回FlinkKafkaProducer010Configuration,其实就是DataStreamSink
public static class FlinkKafkaProducer010Configuration<T> extends DataStreamSink<T> {
private final FlinkKafkaProducerBase wrappedProducerBase;
private final FlinkKafkaProducer010 producer;
private FlinkKafkaProducer010Configuration(DataStream stream, FlinkKafkaProducer010<T> producer) {
//noinspection unchecked
super(stream, producer);
this.producer = producer;
this.wrappedProducerBase = (FlinkKafkaProducerBase) producer.userFunction;
}
关键是FlinkKafkaProducer010扩展StreamSink并重写
processElement
public class FlinkKafkaProducer010<T> extends StreamSink<T> implements SinkFunction<T>, RichFunction {
public FlinkKafkaProducer010(String topicId, KeyedSerializationSchema<T> serializationSchema, Properties producerConfig, KafkaPartitioner<T> customPartitioner) {
// We create a Kafka 09 producer instance here and only "override" (by intercepting) the
// invoke call.
super(new FlinkKafkaProducer09<>(topicId, serializationSchema, producerConfig, customPartitioner));
}
@Override
public void processElement(StreamRecord<T> element) throws Exception {
invokeInternal(element.getValue(), element.getTimestamp());
}
StreamSink中processElement是这样实现的,
public class StreamSink<IN> extends AbstractUdfStreamOperator<Object, SinkFunction<IN>>
implements OneInputStreamOperator<IN, Object> { @Override
public void processElement(StreamRecord<IN> element) throws Exception {
userFunction.invoke(element.getValue());
}
可以看到FlinkKafkaProducer010绕开了对SinkFunction的调用,直接调用invokeInternal
所以SinkFunction的实现是无用的,不会被调用到
public void invoke(T value) throws Exception {
invokeInternal(value, Long.MAX_VALUE);
}
invokeInternal
private void invokeInternal(T next, long elementTimestamp) throws Exception {
final FlinkKafkaProducerBase<T> internalProducer = (FlinkKafkaProducerBase<T>) userFunction;
internalProducer.checkErroneous();
byte[] serializedKey = internalProducer.schema.serializeKey(next);
byte[] serializedValue = internalProducer.schema.serializeValue(next);
String targetTopic = internalProducer.schema.getTargetTopic(next);
if (targetTopic == null) {
targetTopic = internalProducer.defaultTopicId;
}
Long timestamp = null;
if(this.writeTimestampToKafka) {
timestamp = elementTimestamp;
}
ProducerRecord<byte[], byte[]> record;
if (internalProducer.partitioner == null) {
record = new ProducerRecord<>(targetTopic, null, timestamp, serializedKey, serializedValue);
} else {
record = new ProducerRecord<>(targetTopic, internalProducer.partitioner.partition(next, serializedKey, serializedValue, internalProducer.partitions.length), timestamp, serializedKey, serializedValue);
}
if (internalProducer.flushOnCheckpoint) {
synchronized (internalProducer.pendingRecordsLock) {
internalProducer.pendingRecords++; // 如果flushOnCheckpoint打开,需要记录正在发送的record数目
}
}
internalProducer.producer.send(record, internalProducer.callback);
}
代码很容易理解,正常的producer发送流程,
除了,
internalProducer.checkErroneous();
internalProducer.callback
internalProducer.callback是用来处理kafka返回的ack的
FlinkKafkaProducerBase
@Override
public void open(Configuration configuration) {if (logFailuresOnly) {
callback = new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e != null) {
LOG.error("Error while sending record to Kafka: " + e.getMessage(), e);
}
acknowledgeMessage();
}
};
}
else {
callback = new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null && asyncException == null) {
asyncException = exception;
}
acknowledgeMessage();
}
};
}
}
可以看到logFailuresOnly是true的时候,对于Exception只是,log
如果是false,就会记录下这个Exception到asyncException
acknowledgeMessage,无论是否有错都需要ack
private void acknowledgeMessage() {
if (flushOnCheckpoint) {
synchronized (pendingRecordsLock) {
pendingRecords--;
if (pendingRecords == 0) {
pendingRecordsLock.notifyAll();
}
}
}
}
逻辑就是计数--,如果pendingRecords == 0,即没有正在发送的record,通知所有在等锁的
checkErroneous()
protected void checkErroneous() throws Exception {
Exception e = asyncException;
if (e != null) {
// prevent double throwing
asyncException = null;
throw new Exception("Failed to send data to Kafka: " + e.getMessage(), e);
}
}
就是把asyncException里面的异常抛出去
Flink - FlinkKafkaProducer010的更多相关文章
- flink引出的kafka不同版本的兼容性
参考: 官网协议介绍:http://kafka.apache.org/protocol.html#The_Messages_Fetch kafka协议兼容性 http://www.cnblogs.c ...
- Kafka设计解析(二十)Apache Flink Kafka consumer
转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flin ...
- 【译】Apache Flink Kafka consumer
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义. ...
- flink统计根据账号每30秒 金额的平均值
package com.zetyun.streaming.flink; import org.apache.flink.api.common.functions.MapFunction;import ...
- FLINK流计算拓扑任务代码分析<一>
我打算以 flink 官方的 例子 <<Monitoring the Wikipedia Edit Stream>> 作为示例,进行 flink 流计算任务 的源码解析说明. ...
- Flink Flow
1. Create environment for stream computing StreamExecutionEnvironment env = StreamExecutionEnvironme ...
- Flink学习笔记:Connectors之kafka
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...
- 关于flink的时间处理不正确的现象复现&原因分析
跟朋友聊天,说输出的时间不对,之前测试没关注到这个,然后就在processing模式下看了下,发现时间确实不正确 然后就debug,看问题在哪,最终分析出了原因,记录如下: 最下面给出了复现方案 ...
- Flink实战(八) - Streaming Connectors 编程
1 概览 1.1 预定义的源和接收器 Flink内置了一些基本数据源和接收器,并且始终可用.该预定义的数据源包括文件,目录和插socket,并从集合和迭代器摄取数据.该预定义的数据接收器支持写入文件和 ...
随机推荐
- sublime Text 几款插件
留着自已以后用:http://blog.csdn.net/nivana999/article/details/7823805 1.sublime text实现vim命令格式(Vintage插件是自带的 ...
- linux每日命令(21):find命令之exec
find是我们很常用的一个Linux命令,但是我们一般查找出来的并不仅仅是看看而已,还会有进一步的操作,这个时候exec的作用就显现出来了. 一. exec参数说明: -exec 参数后面跟的是com ...
- WARNING: Can not get binary dependencies for file...
环境: window7 64bit python 3.5 pyinstaller 3.2 用pyinstaller 将python文件打包成exe文件的过程中,出现了如下的错误 C:\Users\ca ...
- 使用C#+Linq+SQL快速开发业务
C#开发桌面程序的效率确实很高,今天就来总结下如何使用C#+Linq+SQL快速开发一个新的业务系统. Linq是微软官方的轻量级的ORM工具,使用它结合SQL可以快速的生成实体类,再通过Linq操作 ...
- RR算法 调度
RR算法是使用非常广泛的一种调度算法. 首先将所有就绪的队列按FCFS策略排成一个就绪队列,然后系统设置一定的时间片,每次给队首作业分配时间片.如果此作业运行结束,即使时间片没用完,立刻从队列中去除此 ...
- c# 正则匹配对称括号
https://stackoverflow.com/questions/7898310/using-regex-to-balance-match-parenthesis
- 负载均衡集群介绍 LVS介绍 LVS调度算法 LVS NAT模式搭建
LVS BAT模式搭建 更改主机名: hostnamectl set-hostname centos7-three bash 准备工作 • 三台机器 • 分发器,也叫调度器(简写为dir) • 内网: ...
- 解决wireshark检测不到网卡的问题
第一步 1.打开windows设备管理器. 2.查看-显示隐藏的设备 3.非即插即用驱动程序 4.NetGroup Packet Filter Driver 右键属性---驱动程序---启动类型,修改 ...
- gitlab图形化使用教程 (mtm推荐)
原文:http://www.restran.net/2016/02/23/git-and-gitlab-guide/?utm_source=tuicool&utm_medium=referra ...
- 如何用Baas快速在腾讯云上开发小程序-系列1:搭建API & WEB WebSocket 服务器
版权声明:本文由贺嘉 原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/221059001487422606 来源:腾云阁 h ...