https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/connectors/kafka.html

使用的方式,

DataStream<String> stream = ...;

FlinkKafkaProducer010Configuration myProducerConfig = FlinkKafkaProducer010.writeToKafkaWithTimestamps(
stream, // input stream
"my-topic", // target topic
new SimpleStringSchema(), // serialization schema
properties); // custom configuration for KafkaProducer (including broker list) // the following is necessary for at-least-once delivery guarantee
myProducerConfig.setLogFailuresOnly(false); // "false" by default
myProducerConfig.setFlushOnCheckpoint(true); // "false" by default

 

Besides enabling Flink’s checkpointing, you should also configure the setter methods setLogFailuresOnly(boolean) andsetFlushOnCheckpoint(boolean) appropriately, as shown in the above examples in the previous section:

  • setLogFailuresOnly(boolean): enabling this will let the producer log failures only instead of catching and rethrowing them. This essentially accounts the record to have succeeded, even if it was never written to the target Kafka topic. This must be disabled for at-least-once.
  • setFlushOnCheckpoint(boolean): with this enabled, Flink’s checkpoints will wait for any on-the-fly records at the time of the checkpoint to be acknowledged by Kafka before succeeding the checkpoint. This ensures that all records before the checkpoint have been written to Kafka. This must be enabled for at-least-once.

Note: By default, the number of retries is set to “0”. This means that when setLogFailuresOnly is set to false, the producer fails immediately on errors, including leader changes. The value is set to “0” by default to avoid duplicate messages in the target topic that are caused by retries. For most production environments with frequent broker changes, we recommend setting the number of retries to a higher value.

setLogFailuresOnly,如果true,发送kafka失败时,只是log,不会中断执行,这样可能丢数据

                                如果false,发送kafka失败时,抛异常,这样job会restart,不会丢数据,但是会中断执行;这里最好把produer的retires设成3,这样避免kafka临时不可用导致job中断,比如leader切换

setFlushOnCheckpoint,如果true,在做checkpoint的时候,会等待所有pending的record被发送成功,这样保证数据不丢

 

首先FlinkKafkaProducer010是一种sink,

一般的使用方式是,steam.addSink(RichSinkFunction)

    public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) {
this.transformation.getOutputType();
if(sinkFunction instanceof InputTypeConfigurable) {
((InputTypeConfigurable)sinkFunction).setInputType(this.getType(), this.getExecutionConfig());
} StreamSink sinkOperator = new StreamSink((SinkFunction)this.clean(sinkFunction));
DataStreamSink sink = new DataStreamSink(this, sinkOperator);
this.getExecutionEnvironment().addOperator(sink.getTransformation());
return sink;
}

 

这里用FlinkKafkaProducer010.writeToKafkaWithTimestamps封装这部分,比较tricky

   /**
* Creates a FlinkKafkaProducer for a given topic. The sink produces a DataStream to
* the topic.
*
* This constructor allows writing timestamps to Kafka, it follow approach (b) (see above)
*
* @param inStream The stream to write to Kafka
* @param topicId The name of the target topic
* @param serializationSchema A serializable serialization schema for turning user objects into a kafka-consumable byte[] supporting key/value messages
* @param producerConfig Configuration properties for the KafkaProducer. 'bootstrap.servers.' is the only required argument.
* @param customPartitioner A serializable partitioner for assigning messages to Kafka partitions.
*/
public static <T> FlinkKafkaProducer010Configuration<T> writeToKafkaWithTimestamps(DataStream<T> inStream,
String topicId,
KeyedSerializationSchema<T> serializationSchema,
Properties producerConfig,
KafkaPartitioner<T> customPartitioner) { GenericTypeInfo<Object> objectTypeInfo = new GenericTypeInfo<>(Object.class);
FlinkKafkaProducer010<T> kafkaProducer = new FlinkKafkaProducer010<>(topicId, serializationSchema, producerConfig, customPartitioner);
SingleOutputStreamOperator<Object> transformation = inStream.transform("FlinKafkaProducer 0.10.x", objectTypeInfo, kafkaProducer);
return new FlinkKafkaProducer010Configuration<>(transformation, kafkaProducer);
}

 

可以看到这里实现了addSink的逻辑,返回FlinkKafkaProducer010Configuration,其实就是DataStreamSink

    public static class FlinkKafkaProducer010Configuration<T> extends DataStreamSink<T> {

        private final FlinkKafkaProducerBase wrappedProducerBase;
private final FlinkKafkaProducer010 producer; private FlinkKafkaProducer010Configuration(DataStream stream, FlinkKafkaProducer010<T> producer) {
//noinspection unchecked
super(stream, producer);
this.producer = producer;
this.wrappedProducerBase = (FlinkKafkaProducerBase) producer.userFunction;
}

 

关键是FlinkKafkaProducer010扩展StreamSink并重写

processElement
public class FlinkKafkaProducer010<T> extends StreamSink<T> implements SinkFunction<T>, RichFunction {

    public FlinkKafkaProducer010(String topicId, KeyedSerializationSchema<T> serializationSchema, Properties producerConfig, KafkaPartitioner<T> customPartitioner) {
// We create a Kafka 09 producer instance here and only "override" (by intercepting) the
// invoke call.
super(new FlinkKafkaProducer09<>(topicId, serializationSchema, producerConfig, customPartitioner)); } @Override
public void processElement(StreamRecord<T> element) throws Exception {
invokeInternal(element.getValue(), element.getTimestamp());
}
StreamSink中processElement是这样实现的,
public class StreamSink<IN> extends AbstractUdfStreamOperator<Object, SinkFunction<IN>>
implements OneInputStreamOperator<IN, Object> { @Override
public void processElement(StreamRecord<IN> element) throws Exception {
userFunction.invoke(element.getValue());
}
可以看到FlinkKafkaProducer010绕开了对SinkFunction的调用,直接调用invokeInternal
所以SinkFunction的实现是无用的,不会被调用到
    public void invoke(T value) throws Exception {
invokeInternal(value, Long.MAX_VALUE);
}

invokeInternal

    private void invokeInternal(T next, long elementTimestamp) throws Exception {

        final FlinkKafkaProducerBase<T> internalProducer = (FlinkKafkaProducerBase<T>) userFunction;

        internalProducer.checkErroneous();

        byte[] serializedKey = internalProducer.schema.serializeKey(next);
byte[] serializedValue = internalProducer.schema.serializeValue(next);
String targetTopic = internalProducer.schema.getTargetTopic(next);
if (targetTopic == null) {
targetTopic = internalProducer.defaultTopicId;
} Long timestamp = null;
if(this.writeTimestampToKafka) {
timestamp = elementTimestamp;
} ProducerRecord<byte[], byte[]> record;
if (internalProducer.partitioner == null) {
record = new ProducerRecord<>(targetTopic, null, timestamp, serializedKey, serializedValue);
} else {
record = new ProducerRecord<>(targetTopic, internalProducer.partitioner.partition(next, serializedKey, serializedValue, internalProducer.partitions.length), timestamp, serializedKey, serializedValue);
}
if (internalProducer.flushOnCheckpoint) {
synchronized (internalProducer.pendingRecordsLock) {
internalProducer.pendingRecords++; // 如果flushOnCheckpoint打开,需要记录正在发送的record数目
}
}
internalProducer.producer.send(record, internalProducer.callback);
}

代码很容易理解,正常的producer发送流程,

除了,

internalProducer.checkErroneous();

internalProducer.callback

 

internalProducer.callback是用来处理kafka返回的ack的

FlinkKafkaProducerBase
    @Override
public void open(Configuration configuration) {if (logFailuresOnly) {
callback = new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
if (e != null) {
LOG.error("Error while sending record to Kafka: " + e.getMessage(), e);
}
acknowledgeMessage();
}
};
}
else {
callback = new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null && asyncException == null) {
asyncException = exception;
}
acknowledgeMessage();
}
};
}
}

可以看到logFailuresOnly是true的时候,对于Exception只是,log

如果是false,就会记录下这个Exception到asyncException

 

acknowledgeMessage,无论是否有错都需要ack

    private void acknowledgeMessage() {
if (flushOnCheckpoint) {
synchronized (pendingRecordsLock) {
pendingRecords--;
if (pendingRecords == 0) {
pendingRecordsLock.notifyAll();
}
}
}
}

逻辑就是计数--,如果pendingRecords == 0,即没有正在发送的record,通知所有在等锁的

 

checkErroneous()

    protected void checkErroneous() throws Exception {
Exception e = asyncException;
if (e != null) {
// prevent double throwing
asyncException = null;
throw new Exception("Failed to send data to Kafka: " + e.getMessage(), e);
}
}

就是把asyncException里面的异常抛出去

Flink - FlinkKafkaProducer010的更多相关文章

  1. flink引出的kafka不同版本的兼容性

    参考: 官网协议介绍:http://kafka.apache.org/protocol.html#The_Messages_Fetch kafka协议兼容性  http://www.cnblogs.c ...

  2. Kafka设计解析(二十)Apache Flink Kafka consumer

    转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flin ...

  3. 【译】Apache Flink Kafka consumer

    Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义. ...

  4. flink统计根据账号每30秒 金额的平均值

    package com.zetyun.streaming.flink; import org.apache.flink.api.common.functions.MapFunction;import ...

  5. FLINK流计算拓扑任务代码分析<一>

    我打算以 flink 官方的 例子 <<Monitoring the Wikipedia Edit Stream>> 作为示例,进行 flink 流计算任务 的源码解析说明. ...

  6. Flink Flow

    1. Create environment for stream computing StreamExecutionEnvironment env = StreamExecutionEnvironme ...

  7. Flink学习笔记:Connectors之kafka

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  8. 关于flink的时间处理不正确的现象复现&原因分析

    跟朋友聊天,说输出的时间不对,之前测试没关注到这个,然后就在processing模式下看了下,发现时间确实不正确 然后就debug,看问题在哪,最终分析出了原因,记录如下:    最下面给出了复现方案 ...

  9. Flink实战(八) - Streaming Connectors 编程

    1 概览 1.1 预定义的源和接收器 Flink内置了一些基本数据源和接收器,并且始终可用.该预定义的数据源包括文件,目录和插socket,并从集合和迭代器摄取数据.该预定义的数据接收器支持写入文件和 ...

随机推荐

  1. Python访问MongoDB,并且转换成Dataframe

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/7/13 11:10 # @Author : baoshan # @Site ...

  2. 3. ELMo算法原理解析

    1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...

  3. sql1032n sql6048n db2start启动不了 db2修改hostname

    今天下午把虚拟机上的linux的hostanme改掉了 结果启动DB2的时候发生了这样的错误 SQL6048N  A communication error occurred during START ...

  4. Java两种核心机制

    1.Java虚拟机 2.垃圾回收

  5. Git 审查更改

    但查看提交详细资料后,Jerry 实现字符串的长度不能为负数,所以他决定改变my_strlen函数的返回类型. Jerry 使用git日志命令来查看日志信息. [jerry@CentOS projec ...

  6. SASS常用语法

    原文地址:这里 @charset "UTF-8"; /** * 自定义变量 */ $blue: #1875e7; div { color: $blue; } /** * 变量要嵌在 ...

  7. vue处理用户输入

    为了让用户和你的应用进行互动,可以用 v-on 指令绑定一个监听事件用于调用我们 Vue 实例中定义的方法: <div id="app-5"> <p>{{ ...

  8. iOS开发中的小技巧 - 多张图合成一张

    iOS多张图片合成一张 本文来源于http://www.cnblogs.com/yang-guang-girl/p/5197099.html,感谢博主 代码 #import "RootVie ...

  9. 开发过程中遇到的问题1--------我们的mysql的查询语句时自己写的,没有用oracle的nextvalue函数。所以这里涉及到了并发的问题。

    效果http://www.cnblogs.com/wanggangblog/p/4037543.html 很多的采购单会生成.生成的时候会有订单的编号,然后一个采购单的编号是唯一的,怎么生成呢?之前o ...

  10. SSH远程连接Linux配置

    CentOS:   开启远程连接服务:service sshd start 添加到系统启动项:chkconfig sshd on 客户端工具:windows下连接工具putty   ========= ...