HDU 6187 Destroy Walls
Destroy Walls
Long times ago, there are beautiful historic walls in the city. These walls divide the city into many parts of area.
Since it was not convenient, the new king wants to destroy some of these walls, so he can arrive anywhere from his castle. We assume that his castle locates at (0.6∗2–√,0.6∗3–√).
There are n towers in the city, which numbered from 1 to n. The ith's location is (xi,yi). Also, there are m walls connecting the towers. Specifically, the ith wall connects the tower ui and the tower vi(including the endpoint). The cost of destroying the ith wall is wi.
Now the king asks you to help him to divide the city. Firstly, the king wants to destroy as less walls as possible, and in addition, he wants to make the cost least.
The walls only intersect at the endpoint. It is guaranteed that no walls connects the same tower and no 2 walls connects the same pair of towers. Thait is to say, the given graph formed by the walls and towers doesn't contain any multiple edges or self-loops.
Initially, you should tell the king how many walls he should destroy at least to achieve his goal, and the minimal cost under this condition.
Input
There are several test cases.
For each test case:
The first line contains 2 integer n, m.
Then next n lines describe the coordinates of the points.
Each line contains 2 integers xi,yi.
Then m lines follow, the ith line contains 3 integers ui,vi,wi
|xi|,|yi|≤105
3≤n≤100000,1≤m≤200000
1≤ui,vi≤n,ui≠vi,0≤wi≤10000
Output
For each test case outout one line with 2 integers sperate by a space, indicate how many walls the king should destroy at least to achieve his goal, and the minimal cost under this condition.
Sample Input
4 4
-1 -1
-1 1
1 1
1 -1
1 2 1
2 3 2
3 4 1
4 1 2
Sample Output
1 1
解题思路:
首先,很重要的一点,本题给出的所有坐标值都没用,都是吓人的。
本题的意思是有一个城堡,被数条城墙分隔为多个区域,城墙的端点只会是塔楼,并且城墙只在端点相交,一条城墙的两端不会连在同一个塔楼上(图没有自环),拆除每个城墙都会有一定消耗,国王希望通过最少的消耗,使城堡所有区域都连通。
本题有多组测试用例,每组测试用例包括,塔楼数量(端点数量)n, 城墙数量(边数)m,首先跟随n行,每行包括两个整数x y为塔楼的坐标(没用),之后m行跟随,每行包括三个整数,分别为城墙连接的两个塔楼u , v,拆毁该城墙的消耗w。
要求输出使所有区域连通所需的最少的消耗。
仔细思考一下就会发现,本题的最终要求就是让我们把给定的图通过抹去边变成无环图,而且抹去边的权值要尽可能的小。而将平面图变成无环图叫什么?——生成树!!
提到生成树,我们想到两个算法Prim算法与Kruskal算法,因为本题可以通过将边由大到小排序求的最大生成树,在这里我们使用Kruskal算法。
kruskal算法核心思想:
既然已经给出了邻接表。初始视所有塔楼都为不连通(即拆除所有城墙),之后将城墙按消耗排序,从大到小枚举所有城墙,判断城墙两端的塔楼是否已经连通,若已经连通不做处理(即该墙需要拆除)拆除的墙数加一,若不连通则将该边记录入最大生成树(该墙无需拆除),并从拆毁所有城墙的总消耗里减去该城墙的消耗。
bool cmp(edge a, edge b){ //城墙排序为拆除消耗由大到小
return a.w > b.w;
}
LL kruskal(int n, int m, LL sum, int &cnt){ //kruskal算法
//由于需要改变cnt的值所以在这里cnt传引用
LL ans = sum; //传入的sum为拆除所有城墙所需的总消耗
for(int i = ; i <= n; i++){
father[i] = i; //初始化所有塔楼为不连通
}
sort(Edge + , Edge + + m, cmp); //城墙权值从大到小排序
for(int i = ; i <= m; i++){
int faNode1 = getFather(Edge[i].u);
int faNode2 = getFather(Edge[i].v);
if(faNode1 != faNode2){ //判断城墙连接的两个塔楼是否连通
father[faNode1] = faNode2; //不连通则标记为连通
ans -= Edge[i].w; //该城墙不需要拆数
}else{ //如果城墙两个端点塔楼已经连通则该城墙需要拆除
cnt++; //记录需要拆除的城墙数量
}
}
return ans; //返回的ans为拆除的最小消耗
kruskal
判断是否连通使用并查集
int father[maxn];
int getFather(int x)
{
if(father[x] == x)
return x;
else
return father[x] = getFather(father[x]); }
并查集
AC代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 2e5+;
struct edge{ //edge储存城墙
int u, v; //城墙连接的两个结点
LL w; //拆除的消耗
}Edge[maxn];
int father[maxn];
int getFather(int x) //并查集部分
{
if(father[x] == x)
return x;
else
return father[x] = getFather(father[x]); }
bool cmp(edge a, edge b){ //城墙排序为拆除消耗由大到小
return a.w > b.w;
}
LL kruskal(int n, int m, LL sum, int &cnt){ //kruskal算法
//由于需要改变cnt的值所以在这里cnt传引用
LL ans = sum; //传入的sum为拆除所有城墙所需的总消耗
for(int i = ; i <= n; i++){
father[i] = i; //初始化所有塔楼为不连通
}
sort(Edge + , Edge + + m, cmp); //城墙权值从大到小排序
for(int i = ; i <= m; i++){
int faNode1 = getFather(Edge[i].u);
int faNode2 = getFather(Edge[i].v);
if(faNode1 != faNode2){ //判断城墙连接的两个塔楼是否连通
father[faNode1] = faNode2; //不连通则标记为连通
ans -= Edge[i].w; //该城墙不需要拆数
}else{ //如果城墙两个端点塔楼已经连通则该城墙需要拆除
cnt++; //记录需要拆除的城墙数量
}
}
return ans; //返回的ans为拆除的最小消耗
}
int main(){
int n, m;
while(scanf("%d%d", &n, &m) != EOF){ //输入塔楼数n与城墙数m
for(int i = ; i <= n; i++){
int x, y;
scanf("%d%d", &x, &y); //吸收掉这些没用的坐标
}
LL sum = ;
for(int i = ; i <= m; i++){ //输入邻接表
scanf("%d%d%lld", &Edge[i].u, &Edge[i].v, &Edge[i].w);
sum += Edge[i].w; //记录总权值(拆除所有城墙的消耗)
}
int cnt = ; //cnt记录需要拆除的城墙
LL ans = kruskal(n, m, sum, cnt); //得到最小消耗
printf("%d %lld\n",cnt, ans);
}
return ;
}
HDU 6187 Destroy Walls的更多相关文章
- HDU 6187 Destroy Walls (思维,最大生成树)
HDU 6187 Destroy Walls (思维,最大生成树) Destroy Walls *Time Limit: 8000/4000 MS (Java/Others) Memory Limit ...
- HDU 6187 Destroy Walls (对偶图最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6187 题意:有一个V个结点M条边的带边权无向平面图,有一个人在一个区域,要拆一些墙使得他可以到达任意一 ...
- HDU - 6187 (最大生成树) 最小生成树
Destroy Walls Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) ...
- hdu 4940 Destroy Transportation system(水过)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4940 Destroy Transportation system Time Limit: 2000/1 ...
- HDU 1692 Destroy the Well of Life 水题
Destroy the Well of Life Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showprob ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
- 最短路(数据处理):HDU 5817 Ice Walls
Have you ever played DOTA? If so, you may know the hero, Invoker. As one of the few intelligence car ...
- HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
随机推荐
- WP8启动您已发布的应用
您可以使用来自 Windows.Phone.Management.Deployment 命名空间的 API 来确定,来自您的发布者 ID 的其他应用是否安装在手机上.如果已经安装,您也可以使用该 AP ...
- linux中执行java或者mvn命令提示没有权限解决办法
$ chmod a+x /var/jenkins_home/jdk1.8.0_191/bin/java $ chmod a+x /var/jenkins_home/apache-maven-3.3.9 ...
- Selenium下拉菜单(Select)的操作-----Selenium快速入门(五)
对于一般元素的操作,我们只要掌握本系列的第二,三章即可大致足够.对于下拉菜单(Select)的操作,Selenium有专门的类Select进行处理.文档地址为:http://seleniumhq.gi ...
- web api 请求结果中页面显示的json字符串与json对象结果不一致
我在前端调用这个api的时候也是百思不得其解,明明看到页面上的结果ID是不一样的,但是在js中使用的时候,却一直有重复ID的情况 后来才发现原来是long这个类型的原因,JavaScript中Numb ...
- 3-C#面向对象概念
本篇博客对应视频讲解 回顾 前两篇博文带大家快速的感知一下使用C#编写程序是怎样的过程,能实现什么样的功能.同时也提到了面向对象的概念.本篇文章就是更加详细的去将面向对象编程中常见的概念进行示例说明, ...
- k8s service
Service也是k8s的最小操作单元,是真实应用服务的抽象 Service通常用来将浮动的资源与后端真实提供服务的容器进行关联 Service对外表现为一个单一的访问接口,外部不需要了解后端的规模与 ...
- Linux程序设计:目录维护
一.相关系统调用 1.1 chmod 改变访问权限. #include <sys/stat.h> int chmod(const char *path, mode_t mode) 1.2 ...
- 列表和range、元组
1.listt.append()默认追加在后面 2.list.insert(索引,“元素”)按索引添加 3.list.extend()可添加多个字或字母的字符串,也可以是列表 4.list.pop() ...
- CodeChef March Challenge 2019题解
传送门 \(CHNUM\) 显然正数一组,负数一组 for(int T=read();T;--T){ n=read(),c=d=0; fp(i,1,n)x=read(),x>0?++c:++d; ...
- linux将指令加入开机启动或加入环境变量
以mongodb运行指令为例,/usr/local/webserver/mongodb/bin/mongo 1,linux将指令加入环境变量PATH 简单说PATH就是一组路径的字符串变量,当你输入的 ...