【CF311E】Biologist(网络流,最小割)

题面

洛谷

翻译:

有一个长度为\(n\)的\(01\)串,将第\(i\)个位置变为另外一个数字的代价是\(v_i\)。

有\(m\)个要求

每个要求的形式是

首先确定若干位置都要是\(0\)或者\(1\)

然后给定这\(K\)个位置,如果些位置上都满足要求

那么就可以得到\(W_k\)元

某些要求如果失败了还要倒着给\(g\)元

问最终能够得到的最大利润

输入格式:

第一行是\(n,m,g\)

第二行是\(V_i\)

接下来\(m\)行

第一个数字表示这个集合都要是\(0\)还是\(1\)

第二个数字\(W_i\)表示利润,接下来\(k_i\)表示这个集合中有\(k\)个位置

接下来是这\(k\)个位置,

最后还有一个\(0/1\),如果是\(1\),表示如果失败了还要倒着给\(g\)元。

题解

不是很难的最小割

首先很明显的,源点表示\(0\),汇点表示\(1\)

与自己\(01\)相同的源或者汇连容量为\(0\)的边

然后往另外一侧连容量为\(v_i\)的边

先假设所有的要求都能够拿到利润

老套路的变成了计算最少的损失

如果要倒着给\(G\)元的不过是把这个任务失败的损失变成\(W_i+G\)

然后考虑怎么强行选任务

因为一个任务和其他的点之间不能断开

因此任务和其他的点用\(INF\)连接

然后这个任务要求是\(0/1\)就向对应的源/汇连容量为损失的边就行了

总的来说不是很难???

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 22222
#define INF 1000000000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next,w;}e[3333333];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int level[MAX],S,T,cur[MAX];
queue<int> Q;
bool bfs()
{
memset(level,0,sizeof(level));level[S]=1;
while(!Q.empty())Q.pop();Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(RG int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
{
level[e[i].v]=level[u]+1,Q.push(e[i].v);
if(e[i].v==T)return true;
}
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0,used=0;
for(RG int &i=cur[u];i;i=e[i].next)
if(e[i].w&&level[e[i].v]==level[u]+1)
{
int d=dfs(e[i].v,min(flow-used,e[i].w));
used+=d;ret+=d;e[i].w-=d;e[i^1].w+=d;
if(used==flow)return ret;
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
RG int ret=0;
while(bfs())
{
for(RG int i=S;i<=T;++i)cur[i]=h[i];
while(int res=dfs(S,INF))ret+=res;
}
return ret;
}
int a[MAX],n,m,G;
int St[MAX],top=0;
int Ans;
int main()
{
n=read();m=read();G=read();
for(int i=1;i<=n;++i)a[i]=read();
S=0;T=n+m+1;
for(int i=1;i<=n;++i)
{
int x=read();
if(a[i])Add(i,T,0),Add(S,i,x);
else Add(i,T,x),Add(S,i,0);
}
for(int i=1;i<=m;++i)
{
int v=read(),W=read();
Ans+=W;top=read();
for(int j=1;j<=top;++j)
{
int x=read();
v?Add(i+n,x,INF):Add(x,i+n,INF);
}
W+=read()*G;
v?Add(S,i+n,W):Add(i+n,T,W);
}
printf("%d\n",Ans-Dinic());
return 0;
}

【CF331E】Biologist(网络流,最小割)的更多相关文章

  1. 【题解】 bzoj3894: 文理分科 (网络流/最小割)

    bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...

  2. 【bzoj3774】最优选择 网络流最小割

    题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...

  3. 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割

    题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...

  4. 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan

    题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...

  5. 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割

    题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...

  6. 【bzoj4177】Mike的农场 网络流最小割

    题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...

  7. 【bzoj3438】小M的作物 网络流最小割

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801522.html 题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物 ...

  8. 【bzoj3144】[Hnoi2013]切糕 网络流最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  9. 【bzoj3894】文理分科 网络流最小割

    原文地址:http://www.cnblogs.com/GXZlegend 题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用 ...

  10. 【bzoj2132】圈地计划 网络流最小割

    题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划 ...

随机推荐

  1. Spring学习(二)-----eclipse新建spring项目

    一:准本工作(下载需要的jar包) 1.下载准备Spring-framework-4.2.0 链接为: http://repo.springsource.org/libs-release-local/ ...

  2. Iterable/Iterator傻傻分不清

    区别可迭代对象和迭代器 1.判断是否可以迭代 from collections import Iterabledef fid(times): n = 0 a , b = 0,1 while n < ...

  3. 2018百度之星开发者大赛-paddlepaddle学习

    前言 本次比赛赛题是进行人流密度的估计,因为之前看过很多人体姿态估计和目标检测的论文,隐约感觉到可以用到这次比赛上来,所以趁着现在时间比较多,赶紧报名参加了一下比赛,比赛规定用paddlepaddle ...

  4. datax 执行流程分析

    https://www.jianshu.com/nb/29319571 https://www.jianshu.com/p/b10fbdee7e56

  5. 使用Firebug或chrome-devToolBar深入学习javascript语言核心

    使用Firebug和chrome-devToolBar调试页面样式或脚本是前端开发每天必做之事.这个开发神器到底能给我们带来哪些更神奇的帮助呢?这几天看的一些资料中给了我启发,能不通过Firebug和 ...

  6. 导出Office365中的组及成员

    Set-ExecutionPolicy unrestricted $cred = Get-Credential  $session = New-PSSession -ConfigurationName ...

  7. 【python】详解time模块功能asctime、localtime、mktime、sleep、strptime、strftime、time等函数以及时间的加减运算

    在Python中,与时间处理相关的模块有:time.datetime以及calendar.学会计算时间,对程序的调优非常重要,可以在程序中狂打时间戳,来具体判断程序中哪一块耗时最多,从而找到程序调优的 ...

  8. presto 配置mysql.properties异常Database (catalog) must not be specified in JDBC URL for MySQL connector

    在presto 0.210 以后配置mysql.properties的时候,对于jdbc-url属性配置后面要加上对应要链接的database connection-url=jdbc:mysql:// ...

  9. Python Requests库入门——应用实例-百度、360搜索关键词提交

    百度的关键词接口: http://www.baidu.com/s?wd=keyword 360的关键词接口: http://www.so.com/s?q=keyword keyword就是需要查找的关 ...

  10. mininet实验 动态改变转发规则实验

    写在前面 本实验参考 POX脚本设置好控制器的转发策略,所以只要理解脚本. mininet脚本设置好拓扑和相关信息,所以也只要理解脚本. POX脚本目前基本看不懂. 本实验我学会了:POX控制器Web ...