$O(n*3^n)$好难想...还有好多没见过的操作

  令$f[i][j]$表示最深深度为i,点的状态为j的最小代价,每次枚举状态$S$后,计算$S$的补集里的每个点与S里的点的最小连边代价,再$O(3^n)$枚举S补集的子集,$g[x]$表示补集里状态为x的点往S集合里的点连边的最小代价,然后转移的时候加上它就好。

  但是$g[x]$怎么处理呢...处理不好就会变成$O(3^n*n^2)$了,当然也可以预处理,但是有更简单的方法。因为我们枚举补集的时候是按顺序的,当前状态去掉最低位的状态一定是算过了的,于是就可以用减去lowbit的$g[x-lowbit(x)]$加上最低位往S的某个点连边的最小代价来得到。

  学习到的一些技巧是枚举状态之后每次减去lowbit得到所有的点效率可以提高一些,用于卡常,还有就是上方的$O(n^3)$就能预处理出$g[x]$的方法,都好喵喵啊~

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=, inf=6e6;
int n, m, x, y, z;
int mp[maxn][maxn], f[maxn][<<], g[<<], h[<<], Log[<<], a[maxn], mncost[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline int min(int a, int b){return a<b?a:b;}
int main()
{
read(n); read(m); memset(mp, , sizeof(mp));
for(int i=;i<=m;i++) read(x), read(y), read(z), mp[x][y]=mp[y][x]=min(mp[x][y], z);
for(int i=;i<n;i++) Log[<<i]=i+;
memset(f, , sizeof(f));
for(int i=;i<=n;i++) f[][<<(i-)]=;
int st=(<<n)-, ans=inf;
for(int i=;i<=n;i++)
{
for(int j=;j<=st;j++)
{
int cnt=;
for(int k=st-j;k;k-=k&-k)
{
int x=Log[k&-k]; a[++cnt]=x; mncost[x]=inf;
for(int l=j;l;l-=l&-l) mncost[x]=min(mncost[x], min(1ll*inf, 1ll*mp[Log[l&-l]][x]*(i-)));
}
for(int k=;k<(<<cnt);k++)
{
g[k]=g[k-(k&-k)]+mncost[a[Log[k&-k]]];
h[k]=k?h[k-(k&-k)]|(<<(a[Log[k&-k]]-)):;
f[i][j|h[k]]=min(f[i][j|h[k]], f[i-][j]+g[k]);
}
}
ans=min(ans, f[i][st]);
}
printf("%d\n", ans);
return ;
}

  

NOIP2017 Day2 T2 宝藏(状压DP)的更多相关文章

  1. [NOIP2017]宝藏 状压DP

    [NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...

  2. 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$

    正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...

  3. P3959 宝藏 状压dp

    之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正 ...

  4. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  5. NOIp2017D2T2(luogu3959) 宝藏 (状压dp)

    时隔多年终于把这道题锅过了 数据范围显然用搜索剪枝状压dp. 可以记还有哪些点没到(或者已到了哪些点).我们最深已到的是哪些点.这些点的深度是多少,然后一层一层地往下推. 但其实是没必要记最深的那一层 ...

  6. 计蒜客 宝藏 (状压DP)

    链接 : Here! 思路 : 状压DP. 开始想直接爆搜, T掉了, 然后就采用了状压DP的方法来做. 定义$f[S]$为集合$S$的最小代价, $dis[i]$则记录第$i$个点的"深度 ...

  7. loj2318 「NOIP2017」宝藏[状压DP]

    附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}dep ...

  8. Luogu 3959 [NOIP2017] 宝藏- 状压dp

    题解 真的想不到这题状压的做法...听说还有跑的飞快的模拟退火,要是现场做绝对滚粗QAQ. 不考虑深度,先预处理出 $pt_{i, S}$ 表示让一个不属于 集合 $S$ 的 点$i$ 与点集 $S$ ...

  9. LOJ P3959 宝藏 状压dp noip

    https://www.luogu.org/problemnew/show/P3959 考场上我怎么想不出来这么写的,状压白学了. 直接按层次存因为如果某个点在前面存过了则肯定结果更优所以不用在意各点 ...

随机推荐

  1. 中国天气网 城市代码 sql语句

    mysql的 下载地址:http://download.csdn.net/detail/songzhengdong82/6252651

  2. 教你thinkphp5怎么配置二级域名

    有些项目要将移动端和PC端分离开来,比如访问xxx.com,展示的是PC端的页面.而访问m.xxx.com,展示的是移动端的页面.thinkphp源码需要多多学习,这里记录一下知识点,顺便分享给需要的 ...

  3. Spring Cloud(一):服务治理技术概览【Finchley 版】

    Spring Cloud(一):服务治理技术概览[Finchley 版]  发表于 2018-04-14 |  更新于 2018-05-07 |  Spring Cloud Netflix 是 Spr ...

  4. 做程序开发的你如果经常用Redis,这些问题肯定会遇到

    分布式缓存Redis是一种支持Key-Value等多种数据结构的存储系统.可用于缓存.事件发布或订阅.高速队列等多种场景.Redis使用ANSI C语言编写,提供字符串(String).哈希(Hash ...

  5. loadrunner socket协议问题归纳(4)---buffer接收变长和定长的数据

    测试场景:聊天系统 用户登录后,要先向服务器发送用户名,然后可以发送聊天信息,同时也可以接受聊天信息. 如果接受的字符为定长时,可以设定接受长度.recv buf2 66 #include " ...

  6. Ubuntu16.04安装json-c

    1. 安装依赖 sudo apt-get install git gcc clang libtool autoconf automake doxygen valgrind 一些版本要求,如果版本过低可 ...

  7. P4环境搭建

    P4环境搭建 执行仓库中所有脚本,即可即可安装所有依赖项. GitHub链接 脚本执行顺序:deps,p4c-bm,bmv2,p4c

  8. Tomcat配置 —— server.xml

    Tomcat的核心组件是servlet容器. Tomcat各个组件之间的嵌套关系 server.xml配置如下: <Server port="8005" shutdown=& ...

  9. 第四章 深入JSP技术

    JSP简介 JSP工作原理 JSP是一种servlet,但先部署后编译. JSP生命周期 运行时只会有一个实例,同servlet. JSP语法 JSP元素和模板数据 模板数据就是JSP中的HTML代码 ...

  10. 【leetcode】215. Kth Largest Element in an Array

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...