洛谷P1242 新汉诺塔 【神奇的递归】
题目描述
设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号。将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A、B、C,这个状态称为初始状态。
现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态。
移动时有如下要求:
·一次只能移一个盘;
·不允许把大盘移到小盘上面。
输入输出格式
输入格式:
文件第一行是状态中圆盘总数;
第二到第四行分别是初始状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号;
第五到第七行分别是目标状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号。
输出格式:
每行一步移动方案,格式为:move I from P to Q
最后一行输出最少的步数。
输入输出样例
5
3 3 2 1
2 5 4
0
1 2
3 5 4 3
1 1
move 1 from A to B
move 2 from A to C
move 1 from B to C
move 3 from A to B
move 1 from C to B
move 2 from C to A
move 1 from B to C
7
说明
圆盘总数≤45
题解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 55,maxm = 100005,INF = 2000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1;c = getchar();}
while (c >= 48 &&c <= 57) {out = out * 10 + c - 48;c = getchar();}
return out * flag;
} int n,T[maxn],in[maxn],ans = 0;
const char *alpha = "0ABC"; void move(int u,int to){
if (in[u] == to) return;
for (int i = u - 1; i > 0; i--) move(i,6 - in[u] - to);
printf("move %d from %c to %c\n",u,alpha[in[u]],alpha[to]);
in[u] = to; ans++;
} int main(){
n = read();
int m,x;
for (int i = 1; i <= 3; i++){
m = read();
for (int j = 1; j <= m; j++){
x = read();
in[x] = i;
}
}
for (int i = 1; i <= 3; i++){
m = read();
for (int j = 1; j <= m; j++){
x = read();
T[x] = i;
}
}
for (int i = n; i > 0; i--) move(i,T[i]);
printf("%d\n",ans);
return 0;
}
洛谷P1242 新汉诺塔 【神奇的递归】的更多相关文章
- 洛谷P1242 新汉诺塔(dfs,模拟退火)
洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...
- 洛谷 P1242 新汉诺塔
原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...
- 洛谷P1242 新汉诺塔
传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...
- P1242 新汉诺塔(搜索+模拟退火)
题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/ ...
- BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔
汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...
- P1242 新汉诺塔(hanio)
这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio& ...
- P1242 新汉诺塔
题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...
- 汉诺塔算法的递归与非递归的C以及C++源代码
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...
- python汉诺塔问题的递归理解
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...
随机推荐
- python2 - 列表
列表 a = [1,2,3,4,5,6,7] a[0:4:1]//正向索引 a[-1:-2:-1]//反向索引 列表添加 a = [1, 2] b = [3, 4] +:a + b//把a和b连接,重 ...
- 微信 msg_sec_check接口PHP 调用
$checkContent = '要检测的内容'; $url = 'https://api.weixin.qq.com/wxa/msg_sec_check?access_token='. $res[& ...
- 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)
链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...
- jquery on函数和prop与attr区别
一.jquery on()方法 1.语法 2.例子 $(document).ready(function(){ $("p").on("click",functi ...
- 获取label标签内for的属性值-js
<body> <div class="row_2" id="ass"> <label for="aaa"> ...
- 网易客户端授权密码,errormsg='authentication failed (method LOGIN)' exitcode=EX_NOPERM
zabbix群里一网友在安装msmtp+mutt测试发送邮件失败 配置文件如下: /usr/local/msmtp/etc/msmtprc account default host smtp..com ...
- 《C》VS控制台应用
源(c)文件:主要是源码,包括程序入口,函数的实现 头(h)文件:主要是定义的函数声明 资源(rc)文件:程序中用到的辅助资源,比如位图,图标资源 解决VS2015安装后stdio.h ucrtd.l ...
- 解决Ubuntu16.04下git clone太慢问题
记录一些博客,省着自己再去找了... ss-qt5安装 生成.pac genpac --pac-proxy "SOCKS5 127.0.0.1:1080" --gfwlist-pr ...
- 用P4对数据平面进行编程
引言 SDN架构强调了对控制平面的可编程,数据平面只负责转发,导致数据平面很大程度上受制于功能固定的包处理硬件. P4语言的特性: 目标无关性:P4语言不受制于具体设备,所有可编程芯片都可以使用P4编 ...
- 1029 C语言文法定义
program à external_declaration | program external_declaration <源程序> -> <外部声明> | < ...