洛谷P1242 新汉诺塔 【神奇的递归】
题目描述
设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号。将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A、B、C,这个状态称为初始状态。
现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态。
移动时有如下要求:
·一次只能移一个盘;
·不允许把大盘移到小盘上面。
输入输出格式
输入格式:
文件第一行是状态中圆盘总数;
第二到第四行分别是初始状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号;
第五到第七行分别是目标状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号。
输出格式:
每行一步移动方案,格式为:move I from P to Q
最后一行输出最少的步数。
输入输出样例
5
3 3 2 1
2 5 4
0
1 2
3 5 4 3
1 1
move 1 from A to B
move 2 from A to C
move 1 from B to C
move 3 from A to B
move 1 from C to B
move 2 from C to A
move 1 from B to C
7
说明
圆盘总数≤45
题解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 55,maxm = 100005,INF = 2000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1;c = getchar();}
while (c >= 48 &&c <= 57) {out = out * 10 + c - 48;c = getchar();}
return out * flag;
} int n,T[maxn],in[maxn],ans = 0;
const char *alpha = "0ABC"; void move(int u,int to){
if (in[u] == to) return;
for (int i = u - 1; i > 0; i--) move(i,6 - in[u] - to);
printf("move %d from %c to %c\n",u,alpha[in[u]],alpha[to]);
in[u] = to; ans++;
} int main(){
n = read();
int m,x;
for (int i = 1; i <= 3; i++){
m = read();
for (int j = 1; j <= m; j++){
x = read();
in[x] = i;
}
}
for (int i = 1; i <= 3; i++){
m = read();
for (int j = 1; j <= m; j++){
x = read();
T[x] = i;
}
}
for (int i = n; i > 0; i--) move(i,T[i]);
printf("%d\n",ans);
return 0;
}
洛谷P1242 新汉诺塔 【神奇的递归】的更多相关文章
- 洛谷P1242 新汉诺塔(dfs,模拟退火)
洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...
- 洛谷 P1242 新汉诺塔
原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...
- 洛谷P1242 新汉诺塔
传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...
- P1242 新汉诺塔(搜索+模拟退火)
题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/ ...
- BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔
汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...
- P1242 新汉诺塔(hanio)
这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio& ...
- P1242 新汉诺塔
题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...
- 汉诺塔算法的递归与非递归的C以及C++源代码
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...
- python汉诺塔问题的递归理解
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...
随机推荐
- javaweb(三十八)——mysql事务和锁InnoDB(扩展)
MySQL/InnoDB的加锁分析,一直是一个比较困难的话题.我在工作过程中,经常会有同事咨询这方面的问题.同时,微博上也经常会收到MySQL锁相关的私信,让我帮助解决一些死锁的问题.本文,准备就My ...
- NLP的12条精髓
NLP是神经语言程序学 (Neuro-Linguistic Programming) 的英文缩写.一.没有两个人是一样的 No two persons are the same. 1.没有两个人的人生 ...
- Supervisor4.0和python2.7的crit问题,导致python进程阻塞
1.问题原因 Supervisor高版本在守护python2.7的服务时,会crit并报错并倒至进程阻塞(python进程存在,但不在运行)的问题,一般会和字符集有关系 <type 'excep ...
- 用php做个简单的日历
存档: index.php <html> <head> <title>日历</title> <style> table{border:1px ...
- Java+Selenium 3.x 实现Web自动化 - Maven打包TestNG,利用jenkins执行测试
1. Jenkins本地执行测试 or 服务器端执行测试 测试代码计划通过jenkins执行时,通过网上查询各种教程,大多数为本地执行测试,由此可见,本地执行是大多数人的选择. 经过探讨,最终决定采用 ...
- python yagmail第三方库发送邮件--更简洁
1.安装第三方库yagmail: pip install yagmail 2.上代码 import yagmail import os def send_email(): #链接邮箱服务器 serve ...
- Java普通编程和Web网络编程准备工作
一.工具下载 链接:https://pan.baidu.com/s/1geOdq3h 密码:pzl5 二.Java普通编程 解压下载的资料,并按readme.txt安装jdk和Eclipse. 三.J ...
- and_or_not 逻辑运算符的操作注解!
python操作:
- Siki_Unity_2-4_UGUI_Unity5.1 UI 案例学习
Unity 2-4 UGUI Unity5.1 UI 案例学习 任务1-1:UGUI简介 什么是GUI: 游戏的开始菜单 RPG游戏的菜单栏.侧边栏和功能栏(比如背包系统.任务列表等) 设计用来控制移 ...
- 《Node.js核心技术教程》学习笔记
<Node.js核心技术教程>TOC \o "1-3" \h \z \u 1.章模块化编程 2019.2.19 13:30' PAGEREF _101 \h 1 08D ...