题目描述

设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号。将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A、B、C,这个状态称为初始状态。

现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态。

移动时有如下要求:

·一次只能移一个盘;

·不允许把大盘移到小盘上面。

输入输出格式

输入格式:

文件第一行是状态中圆盘总数;

第二到第四行分别是初始状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号;

第五到第七行分别是目标状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号。

输出格式:

每行一步移动方案,格式为:move I from P to Q

最后一行输出最少的步数。

输入输出样例

输入样例#1:

5
3 3 2 1
2 5 4
0
1 2
3 5 4 3
1 1
输出样例#1:

move 1 from A to B
move 2 from A to C
move 1 from B to C
move 3 from A to B
move 1 from C to B
move 2 from C to A
move 1 from B to C
7

说明

圆盘总数≤45

题解

我真的是弱,看到立刻懵逼
看了某大神的博客有所理解

当我们在移当前最大的盘时,比如从A->B,那么其他所有小盘都要让开一条路,乖乖地躲到C去
这样的策略是唯一的,因为再没有别的办法实现大盘的移动

所以我们从最大的盘开始,想方法移动到末位置,比如移N号盘,若N号盘在末位置,就不用移,如果不在,就将前
N - 1个盘通过同样的操作移动到另一个无关的盘中,再移动N号盘

代码比我想象的要少很多
由于同一个位置盘之间满足升序,所以只需要记录每个盘所在的位置

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 55,maxm = 100005,INF = 2000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1;c = getchar();}
while (c >= 48 &&c <= 57) {out = out * 10 + c - 48;c = getchar();}
return out * flag;
} int n,T[maxn],in[maxn],ans = 0;
const char *alpha = "0ABC"; void move(int u,int to){
if (in[u] == to) return;
for (int i = u - 1; i > 0; i--) move(i,6 - in[u] - to);
printf("move %d from %c to %c\n",u,alpha[in[u]],alpha[to]);
in[u] = to; ans++;
} int main(){
n = read();
int m,x;
for (int i = 1; i <= 3; i++){
m = read();
for (int j = 1; j <= m; j++){
x = read();
in[x] = i;
}
}
for (int i = 1; i <= 3; i++){
m = read();
for (int j = 1; j <= m; j++){
x = read();
T[x] = i;
}
}
for (int i = n; i > 0; i--) move(i,T[i]);
printf("%d\n",ans);
return 0;
}

洛谷P1242 新汉诺塔 【神奇的递归】的更多相关文章

  1. 洛谷P1242 新汉诺塔(dfs,模拟退火)

    洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...

  2. 洛谷 P1242 新汉诺塔

    原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...

  3. 洛谷P1242 新汉诺塔

    传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...

  4. P1242 新汉诺塔(搜索+模拟退火)

    题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/ ...

  5. BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔

    汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...

  6. P1242 新汉诺塔(hanio)

    这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio& ...

  7. P1242 新汉诺塔

    题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...

  8. 汉诺塔算法的递归与非递归的C以及C++源代码

    汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...

  9. python汉诺塔问题的递归理解

    一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...

随机推荐

  1. JS基础,课堂作业,相亲问答

    相亲问答 <script> var a = prompt("你有房子么?"); var b = prompt("你有钱么?"); var c = p ...

  2. python爬取斗图网中的 “最新套图”和“最新表情”

    1.分析斗图网 斗图网地址:http://www.doutula.com 网站的顶部有这两个部分: 先分析“最新套图” 发现地址栏变成了这个链接,我们在点击第二页 可见,每一页的地址栏只有后面的pag ...

  3. HTTP 两种基本请求方法 GET和 POST的区别

    GET方法 1.GET交互方式是从服务器上获取数据,而并非修改数据,所以GET交互方式是安全的.就像数据库查询一样,从数据库查询数据,并不会影响数据库的数据信息,对数据库来说,也就是安全的.2.GET ...

  4. java计算两个日期之间的天数,排除节假日和周末

    如题所说,计算两个日期之前的天数,排除节假日和周末.这里天数的类型为double,因为该功能实现的是请假天数的计算,有请一上午假的为0.5天. 不够很坑的是每个日期都要查询数据库,感觉很浪费时间. 原 ...

  5. List Leaves 树的层序遍历

    3-树2 List Leaves (25 分) Given a tree, you are supposed to list all the leaves in the order of top do ...

  6. thinkphp5框架生成二维码

    二话不说,先上代码: 第一中: 不用再本地保存文件,直接在前台页面显示: 这是控制器里面的内容,哦,对啦,首先要下载SDK:.phpqrcode类文件下载,下载地址:https://sourcefor ...

  7. html js 全选 反选 全不选源代码

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  8. 华为笔试——C++进制转换

    题目:2-62进制转换 题目介绍:输入一个n1 进制的整数(包括负数),将其转换成n2 进制,其中n1 .n2 的范围是 [ 2,62 ] .每个数字的范围是0-9.a-z.A-Z.不用考虑非法输入. ...

  9. Amazon - removed your selling privileges and placed a temporary hold on any funds - 1

    Hello, We are writing to let you know that we have removed your selling privileges and placed a temp ...

  10. 如何计算FOB价格

    FOB价格是国际贸易术语常有的一种算法,针对不同的对象,FOB价格也有不一样的算法.对于做外贸生意的朋友,需要了解FOB价格以及各项费用名称,以及如何计算FOB价格. FOB价格是国际FOB价格语常有 ...