Description

小Y家里有一个大森林,里面有n棵树,编号从1到n。一开始这些树都只是树苗,只有一个节点,标号为1。这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力。小Y掌握了一种魔法,能让第l棵树到第r棵树的生长节点长出一个子节点。同时她还能修改第l棵树到第r棵树的生长节点。她告诉了你她使用魔法的记录,你能不能管理她家的森林,并且回答她的询问呢?

Input

第一行包含 2 个正整数 n,m,共有 n 棵树和 m 个操作。接下来 m 行,每行包含若干非负整数表示一个操作,操作格式为:

0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例如,第一个 0 号操作产生的子节点标号为 2), l 到 r 之间的树长出的节点标号都相同。保证 1≤l≤r≤n 。

1 l r x 表示将第 l 棵树到第 r 棵树的生长节点改到标号为 x 的节点。对于 i (l≤i≤r)这棵树,如果标号 x的点不在其中,那么这个操作对该树不产生影响。保证 1≤l≤r≤n , x 不超过当前所有树中节点最大的标号。

2 x u v 询问第 x 棵树中节点 u 到节点 v 点的距离,也就是在第 x 棵树中从节点 u 和节点 v 的最短路上边的数量。保证1≤x≤n,这棵树中节点 u 和节点 v 存在。N<=105,M<=2*105

Output

输出包括若干行,按顺序对于每个小Y的询问输出答案

Sample Input

5 5

0 1 5

1 2 4 2

0 1 4

2 1 1 3

2 2 1 3

Sample Output

1

2

Solution

很巧妙的一道题目

这道题确实是LCT加“虚点”,但不要想复杂了,这个虚点跟虚树没半毛钱关系,只是这道题YY出来的一个东东

首先明白对于同一棵树,询问的操作永远可以放在修改操作之后,因为树的边只会增加,不会减少或变更。所以对于一棵树,直接考虑它的最终状态,然后处理询问

考虑只建一棵树,想办法在遍历的过程中快速从前面一棵树的形态变成接下来一棵树的形态

发现,如果先让所有的长出来的节点接在第一个生长节点(就是根)上,那么如果中间变更了生长节点,可以直接把在变更之后生长出的节点全部换根,变成新的生长节点的儿子。这个正好是新的形态。而对于 \(r\) 之后的,也就是没有变这个生长节点的树们,可以直接把换根过去的节点再换回来就变成应该的状态了

所以YY出了一个虚点,实际上就是没有点权的点

这个点可以用来当作它出现之后生长出的节点的根,换根的时候,直接带上这个虚点一起换,这样就只要改变两条边,就只是常数复杂度了

然后开始建最开始的树

对于每次长节点,就是在最近一次出现的虚点下加一个点,点权为1

对于每次有要更改节点的操作,暂时不进行更改(因为有个 \(l\) 到 \(r\) 的范围嘛),只是在上一个虚点之下再建一个虚点,之后的实点都加在这个新的虚点之下,保证换根的优秀复杂度

于是就可以离线了,输入操作的时候把初始树建好,并且对于每个更换节点的操作拆成两个操作,一个换根过去,一个换根回来

扫一遍就做完了

巧妙

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10,MAXM=200000+10,inf=0x3f3f3f3f;
int n,m,L[MAXM],R[MAXM],realcnt,nowaux,size,pt[MAXM+MAXN],pcnt,ans[MAXM],anscnt;
struct data{
int opt,ps,u,v;
inline bool operator < (const data &A) const {
return ps<A.ps||ps==A.ps&&opt<A.opt;
};
};
data p[MAXM<<1];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN+MAXM][2],fa[MAXN+MAXM],rev[MAXN+MAXM],sum[MAXN+MAXM],val[MAXN+MAXM],stack[MAXN+MAXM],cnt;
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void pushup(int x)
{
sum[x]=sum[lc(x)]+sum[rc(x)]+val[x];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline int access(int x)
{
int y=0;
for(;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
return y;
}
inline void link(int x,int y)
{
splay(x);fa[x]=y;
}
inline void cut(int x)
{
access(x);splay(x);lc(x)=fa[lc(x)]=0;pushup(x);
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(m);
pt[++realcnt]=++size;
nowaux=++size;
T.val[1]=1;
L[1]=1;R[1]=n;
T.link(nowaux,1);
for(register int i=1;i<=m;++i)
{
int opt;
read(opt);
if(opt==0)
{
int l,r;
read(l);read(r);
pt[++realcnt]=++size;
L[realcnt]=l,R[realcnt]=r;
T.val[size]=1;
T.link(size,nowaux);
}
if(opt==1)
{
int l,r,x;
read(l);read(r);read(x);
chkmax(l,L[x]);chkmin(r,R[x]);
if(l>r)continue;
T.link(++size,nowaux);
p[++pcnt]=(data){i-m,l,size,pt[x]};
p[++pcnt]=(data){i-m,r+1,size,nowaux};
nowaux=size;
}
if(opt==2)
{
int x,u,v;
read(x);read(u);read(v);
p[++pcnt]=(data){++anscnt,x,pt[u],pt[v]};
}
}
std::sort(p+1,p+pcnt+1);
for(register int i=1;i<=pcnt;++i)
if(p[i].opt>0)
{
int res=0,lca;
T.access(p[i].u);T.splay(p[i].u);res+=T.sum[p[i].u];
lca=T.access(p[i].v);T.splay(p[i].v);res+=T.sum[p[i].v];
T.access(lca);T.splay(lca);res-=(T.sum[lca]<<1);
ans[p[i].opt]=res;
}
else T.cut(p[i].u),T.link(p[i].u,p[i].v);
for(register int i=1;i<=anscnt;++i)write(ans[i],'\n');
return 0;
}

【刷题】BZOJ 4573 [Zjoi2016]大森林的更多相关文章

  1. bzoj 4573: [Zjoi2016]大森林

    Description 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树 都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. ...

  2. bzoj 4573: [Zjoi2016]大森林 lct splay

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 http://blog.csdn.net/lych_cys/article/details/5 ...

  3. [ZJOI2016]大森林(LCT)

    题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y掌握了一种 ...

  4. [ZJOI2016]大森林

    Description: 小Y家里有一个大森林,里面有n棵树,编号从1到n 0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例 ...

  5. BZOJ4573:[ZJOI2016]大森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 https://www.luogu.org/problemnew/show/P3348#sub ...

  6. 【LuoguP3348】[ZJOI2016]大森林

    题目链接 题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y ...

  7. P3348 [ZJOI2016]大森林

    \(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...

  8. 洛谷P3348 [ZJOI2016]大森林 [LCT]

    传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...

  9. [BZOJ4573][ZJOI2016]大♂森林

    bzoj luogu uoj sol \(orz\ \ HJT\ \ dalao\)教会我做这道题. 考虑每两个相邻位置的树的差异. 对于一个1操作(更换生长节点),假设区间是\([l,r]\),那么 ...

随机推荐

  1. 如何在存储过程的IN操作中传递字符串变量

    原始SQL如下: SELECT MONTH(OrderTime) AS datetype, SUM(DeliveryCount) AS decount, Region FROM (SELECT dbo ...

  2. python-模块详解

    模块: 模块的分类: 第三方模块/扩展模块:没在安装python解释器的时候安装的那些功能 自定义模块:你写的功能如果是一个通用的功能,那你就把它当做一个模块 内置模块:安装python解释器的时候跟 ...

  3. selenium webdriver API详解(二)

    本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:获取当前页面的title(一般获取title用于断言) from s ...

  4. Scrapy爬去哪儿~上海一日游门票并存入MongoDB数据库

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZwAAAGGCAYAAABPDDfEAAAgAElEQVR4nOy9C3Rb1Z3/+z1Hkm35mT

  5. java计算工龄

    计算工龄原则:若是2000-10-12作为开始工作时间,则到下一年的2001-10-13算为一年.有个bug,不满一年的工龄是错误的. import java.util.Date;import jav ...

  6. IDEA 破解图文教程 - 2018.9 更

    你好!这里是你要找的 IDEA 破解方法 目录     一.前言    二.IDEA 安装         2.1 下载IDEA 旗舰版         2.2 开始安装         2.3 自定 ...

  7. redis主从配置+sentinel哨兵

    redis主从配置+sentinel哨兵 1:编译环境准备 1.1环境确认 Redis是一个开源.支持网络.基于内存.键值对存储数据库,使用ANSI C编写.所以在搭建Redis服务器时需要C语言的编 ...

  8. 【转】PHPCMS+PHPExcel实现后台数据导入导出功能

    首先,上图之中的红色框框是没有的,我们想要给他加上,当然是要改HTML页面啦,废话,我们跟ECSHOP一样由PHP路径找模板: 看看路由原理: 首先,上图之中的红色框框是没有的,我们想要给他加上,当然 ...

  9. JDBC及DBUtils

    1.JDBC2.DBUtils ###01JDBC概念和数据库驱动程序 * A: JDBC概念和数据库驱动程序 * a: JDBC概述 * JDBC(Java Data Base Connectivi ...

  10. asp.net mvc 使用Ajax调用Action 返回数据【转】

      使用asp.net mvc 调用Action方法很简单. 一.无参数方法. 1.首先,引入jquery-1.5.1.min.js 脚本,根据版本不同大家自行选择. <script src=& ...