flink统计根据账号每30秒 金额的平均值
package com.zetyun.streaming.flink; import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.node.ObjectNode;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.streaming.util.serialization.JSONDeserializationSchema;
import org.apache.flink.util.Collector; import javax.annotation.Nullable;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Iterator;
import java.util.Properties; /**
* Created by jyt on 2018/4/10.
* 基于账号计算每30秒 金额的平均值
*/
public class EventTimeAverage { public static void main(String[] args) throws Exception {
final ParameterTool parameterTool = ParameterTool.fromArgs(args);
String topic = parameterTool.get("topic", "accountId-avg");
Properties properties = parameterTool.getProperties();
properties.setProperty("bootstrap.servers", "192.168.44.101:9092");
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
ObjectMapper objectMapper = new ObjectMapper();
SingleOutputStreamOperator<ObjectNode> source = env.addSource(new FlinkKafkaConsumer010(
topic,
new JSONDeserializationSchema(),
properties));
//设置WaterMarks方式一
/*SingleOutputStreamOperator<ObjectNode> objectNodeOperator = source.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<ObjectNode>(Time.seconds(15)) {
@Override
public long extractTimestamp(ObjectNode element) {
SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");
Date eventTime = null;
try {
eventTime = format.parse(element.get("eventTime").asText());
} catch (ParseException e) {
e.printStackTrace();
}
return eventTime.getTime();
}
});*/
//设置WaterMarks方式二
SingleOutputStreamOperator<ObjectNode> objectNodeOperator = source.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<ObjectNode>() {
public long currentMaxTimestamp = 0L;
public static final long maxOutOfOrderness = 10000L;//最大允许的乱序时间是10s
Watermark a = null;
SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss"); @Nullable
@Override
public Watermark getCurrentWatermark() {
a = new Watermark(currentMaxTimestamp - maxOutOfOrderness);
return a;
} @Override
public long extractTimestamp(ObjectNode jsonNodes, long l) {
String time = jsonNodes.get("eventTime").asText();
long timestamp = 0;
try {
timestamp = format.parse(time).getTime();
} catch (ParseException e) {
e.printStackTrace();
}
currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
return timestamp;
}
});
KeyedStream<Tuple3<String, Double, String>, Tuple> keyBy = objectNodeOperator.map(new MapFunction<ObjectNode, Tuple3<String, Double, String>>() {
@Override
public Tuple3<String, Double, String> map(ObjectNode jsonNodes) throws Exception {
System.out.println(jsonNodes.get("accountId").asText() + "==map====" + jsonNodes.get("amount").asDouble() + "===map===" + jsonNodes.get("eventTime").asText());
return new Tuple3<String, Double, String>(jsonNodes.get("accountId").asText(), jsonNodes.get("amount").asDouble(), jsonNodes.get("eventTime").asText());
}
}).keyBy(0); SingleOutputStreamOperator<Object> apply = keyBy.window(TumblingEventTimeWindows.of(Time.seconds(30))).apply(new WindowFunction<Tuple3<String,Double,String>, Object, Tuple, TimeWindow>() {
@Override
public void apply(Tuple tuple, TimeWindow timeWindow, Iterable<Tuple3<String, Double, String>> iterable, Collector<Object> collector) throws Exception {
Iterator<Tuple3<String, Double, String>> iterator = iterable.iterator();
int count =0;
double num = 0.0;
///Tuple2<String, Double> result = null;
Tuple3<String, Double, String> next = null;
String accountId = null ;
while (iterator.hasNext()) {
next = iterator.next();
System.out.println(next);
accountId=next.f0;
num += next.f1;
count++;
}
if (next != null) { collector.collect(new Tuple2<String, Double>(accountId,num/count));
}
}
}); apply.print();
//apply.addSink(new FlinkKafkaProducer010<String>("192.168.44.101:9092","wiki-result",new SimpleStringSchema()));
env.execute("AverageDemo");
} }
flink统计根据账号每30秒 金额的平均值的更多相关文章
- 使用streaming window函数统计用户不同时间段平均消费金额等指标
场景 现在餐厅老板已经不满足仅仅统计历史用户消费金额总数了,他想知道每个用户半年,每个月,每天,或者一小时消费的总额,来店消费的次数以及平均金额. 给出的例子计算的是每5秒,每30秒,每1分钟的用户消 ...
- 30秒搭建Github Page
如果中国每个程序员都写博客,那么中国IT届的春天就来了 原文转自我的前端博客,链接:http://www.hacke2.cn/create-github-page/ 有同学问我的网站是怎么创建的,其实 ...
- Flink统计当日的UV、PV
Flink 统计当日的UV.PV 测试环境: flink 1.7.2 1.数据流程 a.模拟数据生成,发送到kafka(json 格式) b.flink 读取数据,count c. 输出数据到kafk ...
- 云计算之路-阿里云上:从ASP.NET线程角度对“黑色30秒”问题的全新分析
在这篇博文中,我们抛开对阿里云的怀疑,完全从ASP.NET的角度进行分析,看能不能找到针对问题现象的更合理的解释. “黑色30秒”问题现象的主要特征是:排队的请求(Requests Queued)突增 ...
- 破解YunFile下载间隔10分钟/下载等待30秒
[破解10分钟间隔] 可以采用断网重连等方法重新获取IP地址,就不用再等十分钟了 [破解30秒等待] 收藏一个书签,书签地址如下 javascript:var downpage_link = docu ...
- 云计算之路-阿里云上:Web服务器遭遇奇怪的“黑色30秒”问题
今天下午访问高峰的时候,主站的Web服务器出现奇怪的问题,开始是2台8核8G的云服务器(ECS),后来又加了1台8核8G的云服务器,问题依旧. 而且3台服务器特地使用了不同的配置:1台是禁用了虚拟内存 ...
- 云计算之路-阿里云上:结合IIS日志分析“黑色30秒”问题
在昨天针对“黑色30秒”问题的分析中,我们猜测Requests Queued上升是由于正在处理的请求出不去(到达不了客户端).今天我们结合IIS日志验证这个猜测. IIS日志中有一个重要的指标——ti ...
- 云计算之路-阿里云上:借助IIS Log Parser Studio分析“黑色30秒”问题
今天下午15:11-15:13间出现了类似“黑色30秒”的状况,我们用强大的IIS日志分析工具——Log Parser Studio进行了进一步的分析. 分析情况如下—— 先看一下Windows性能监 ...
- 30秒攻破任意密码保护的PC:深入了解5美元黑客神器PoisonTap
近日,著名硬件黑客Samy Kamkar利用5美元设备打造的黑客工具PoisonTap,只需30秒,就可以攻破设置有任意密码的电脑系统,并实现长期后门安装.PoisonTap不是暴力破解密码,而是绕过 ...
随机推荐
- CentOS-Linux系统下安装JDK
一般情况下,Linux系统都有自带的JDK,但不符合开发要求,所以需要卸载,重新安装JDK 步骤1:查看现有安装的JDK版本 命令: rpm -qa | grep -i java 步骤2:卸载已有软件 ...
- CakePHP Configure::read('KHCITY') 数据配置读取
1. 2.引入 循环遍历 正确:
- react项目跨域问题
在用知乎写demo的时候碰到了跨域问题 解决跨域如下: 跨域代理解决 "proxy":"https://news-at.zhihu.com", 请求的时候, ...
- Vue.js学习(常用指令)
Vue.js的指令是以v-开头,它们用于HTML元素,指令提供了一些特殊的特性,将指令绑定在元素上时,指令会为绑定的目标元素添加一些特殊的行为,我们可以将指令看作特殊的HTML特性. 本文参考:htt ...
- JavaScript运算符优先级引起的bug
[下面是昨天发给同事的邮件,为防止泄露商业机密,隐去了项目名和变量名] ==================================================== 昨天发现Nx代码中的一 ...
- MyBatis基本配置和实践(五)
第一步:创建一个Maven工程 第二步:编辑Maven工程的pom.xml,引入mybatis-generator-maven-plugin <?xml version="1.0&qu ...
- spring boot(1)-Hello World
spring boot简介 spring boot是由spring官方推出的一个新框架,对spring进行了高度封装,是spring未来的发展方向.spring boot功用众多,其中最主要的功能就是 ...
- oralce的判断语句
大家对 IF ELSE 语句应该都很熟悉吧,它是用来对过程进行控制的.在 SQL 的世界中 CASE 语句有类似的效果.下面简单的介绍 CASE 语句的用法. CASE 语句的形式 事实上,CASE ...
- 关于webWorker的理解和简单例子
一.理解 当在 HTML 页面中执行脚本时,页面的状态是不可响应的,直到脚本已完成. web worker 是运行在后台的 JavaScript,独立于其他脚本,不会影响页面的性能.您可以继续做任何愿 ...
- js之yeild
1.万恶的回调 对前端工程师来说,异步回调是再熟悉不过了,浏览器中的各种交互逻辑都是通过事件回调实现的,前端逻辑越来越复杂,导致回调函数越来越多,同时 nodejs 的流行也让 javascript ...