题目链接:随机数生成器

  经典数学题……

  为了方便接下来的处理,我们可以先把\(X_1=t\)的情况特判掉。

  当\(a=0\)的时候显然只需再判一下\(b\)是否等于\(t\)即可。

  当\(a=1\)的时候就变成了一次的同余方程,直接用拓展欧几里得解出来即可。

  当\(a>1\)的时候可以等比数列求和,对于\(i>1\),得到\(X_i=a^{i-1}X_1+\frac{a^{i-1}-1}{a-1}b\)。

  由于\(p\)是质数,那么\(a-1\)就有逆元。于是移下项,最后剩下一个形如\(a^{i-1}\equiv y \pmod p\)的方程,大步小步解出来即可。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define mod 2000029 using namespace std;
typedef long long llg; int T,a,b,x1,t,p;
struct hash{
int head[mod],next[mod],c[mod],tt,d[mod],ld;
int to[mod]; bool vis[mod];
int find(int now){
int u=now%mod;
for(int i=head[u];i;i=next[i])
if(to[i]==now) return i;
return 0;
}
void insert(int now,int i){
int u=now%mod,v;
if((v=find(now))){c[v]=i;return;}
if(!vis[u]) vis[u]=1,d[++ld]=u; c[++tt]=i;
to[tt]=now; next[tt]=head[u]; head[u]=tt;
}
void finalize(){
for(int i=1;i<=ld;i++) vis[d[i]]=0,head[d[i]]=0;
ld=0; tt=0;
}
}A; int gcd(int x,int y){
int r=x%y;
while(r) x=y,y=r,r=x%y;
return y;
} int exgcd(int a,int b,int &x,int &y){
if(!b){x=1;y=0;return a;}
int aa=exgcd(b,a%b,x,y),bb=x;
x=y; y=bb-1ll*(a/b)*y%p; if(y<0) y+=p;
return aa;
} int mi(int a,int b){
int s=1;
while(b){
if(b&1) s=1ll*s*a%p;
a=1ll*a*a%p; b>>=1;
}
return s;
} int main(){
File("a");
scanf("%d",&T);
while(T--){
scanf("%d %d %d %d %d",&p,&a,&b,&x1,&t);
if(x1==t){printf("1\n");continue;}
if(a==0) printf(b==t?"2\n":"-1\n");
else if(a==1){
int X=t-x1,x,y,q;
if(X<0) X+=p; q=exgcd(b,p,x,y);
if(X%q) printf("-1\n");
else{
x=1ll*x*(X/q)%p; x%=1ll*(p/q)*(b/q);
printf("%d\n",x+1);
}
}
else{
b=1ll*b*mi(a-1,p-2)%p; t+=b;
t=1ll*t*mi(x1+b,p-2)%p;
int N=sqrt(p)+1,y=mi(a,N),ans=p+1;
for(int i=0,x=t;i<N;i++) A.insert(x,i),x=1ll*x*a%p;
for(int i=1,j=N,x=y,u;j<=p+N;j+=N,i++,x=1ll*x*y%p)
if((u=A.find(x))) ans=min(ans,i*N-A.c[u]);
if(ans==p+1) printf("-1\n");
else printf("%d\n",ans+1);
A.finalize();
}
}
return 0;
}

BZOJ 3122 【SDOI2013】 随机数生成器的更多相关文章

  1. bzoj 3122: [Sdoi2013]随机数生成器

    #include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...

  2. bzoj 3122 [Sdoi2013]随机数生成器(逆元,BSGS)

    Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.    接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...

  3. bzoj 3122 : [Sdoi2013]随机数生成器 BSGS

    BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...

  4. bzoj 3122: [Sdoi2013]随机数生成器【BSGS】

    题目要求的是: \[ ...a(a(a(ax+b)+b)+b)+b...=a^nx+a^{n-1}b+a^{n-2}b+...+b\equiv t(mod\ p) \] 后面这一大坨看着不舒服,所以考 ...

  5. Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)

    Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...

  6. BZOJ 3122 SDOI2013 随机数发生器 数论 EXBSGS

    标题效果:给定一列数X(i+1)=(a*Xi+b)%p 最低要求i>0.所以Xi=t 0.0 这个问题可以1A那很棒 首先讨论特殊情况 如果X1=t ans=1 如果a=0 ans=b==t? ...

  7. 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description ...

  8. bzoj3122 [SDOI2013]随机数生成器

    bzoj3122 [SDOI2013]随机数生成器 给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\) 求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\) \(0\l ...

  9. 洛咕 P3306 [SDOI2013]随机数生成器

    洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...

  10. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

随机推荐

  1. Python - 3.6 学习二

    Python 的高级特性 切片 对于指定索引范围取值的操作,Python提供了slice方法,类似于Excel中数据透视表的切片器. >>> L = ['Michael', 'Sar ...

  2. (java部署篇)eclipse ~ 自动补全词的各种控制(转)

    #这种方法只适用于Eclipse Classic版本(这个版本带有插件的源码) 在使用Eclispe的过程,感觉自动补全做的不好,没有VS的强大.下面说两个增强自动补全的方法: 1.增加Eclipse ...

  3. python中的configparser类

    Python中有ConfigParser类,可以很方便的从配置文件中读取数据(如DB的配置,路径的配置),所以可以自己写一个函数,实现读取config配置. config文件的写法比较简单,[sect ...

  4. 无线路由器wan口和lan口ip同网段导致无法上网解决办法

    环境 本地网段为192.168.0.0/24 路由器默认网段也是192.168.0.0/24 设置好路由器wan口DHCP自动获取ip以后无法上网 解决办法 把路由器是lan口地址设置为192.168 ...

  5. Mixed Content: The page at 'https://a.t.com/login' was loaded over HTTPS, but requested an insecure stylesheet 非全站https

    Mixed Content: The page at 'https://a.t.com/login' was loaded over HTTPS, but requested an insecure ...

  6. Myeclipse 2013 professional 破解

    破解前要先关闭Myeclipse2013 1.(1)输入usercode可以随便输入,(2)然后选择Myeclipse的版本,(3)点击systemid按钮 2.然后点击Tools菜单栏下的Rebui ...

  7. Navicat连接服务器上的Mysql数据库

  8. 怎么在Linux上抓包分析

    怎么在Linux上抓包分析 1.在Linux上抓包 例如在Ubuntu上,用命令抓包, tcpdump tcp  -i any -s0 -w desk.cap 用  sz desk.cap  把数据包 ...

  9. MVC模式:python案例

    quotes = ('A man is not complete until he is married. Then he is finished.', 'As I said before, I ne ...

  10. python 面向对象 字典 有序字典

    和原来字典一模一样 把dict 传进去 相当于这个类就是一个字典 # 把dict 传进去 相当于这个类就是一个字典 class Mydict(dict): pass d = Mydict() prin ...