BZOJ 4008 亚瑟王
Description
小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。
他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前OIer,小K自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连Spaly都敲不对了,因此,希望你能帮帮小K,让他感受一下当欧洲人是怎样的体验。
本题中我们将考虑游戏的一个简化版模型。
玩家有一套卡牌,共\(n\)张。游戏时,玩家将\(n\)张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为\(1 \sim n\)。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第\(i\)张卡牌的技能发动概率为\(p_{i}\),如果成功发动,则会对敌方造成\(d_{i}\)点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,\(p_{i}\)不会为\(0\),也不会为\(1\),即\(0<p_{i}<1\)。
一局游戏一共有\(r\)轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:
\(1\)如果这张卡牌在这一局游戏中已经发动过技能,则
\(1.1\) 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌);
否则(是最后一张),结束这一轮游戏。
\(2\)否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张
\(2.1\)将其以\(p_{i}\)的概率发动技能。
\(2.2\)如果技能发动,则对敌方造成\(d_{i}\)点伤害,并结束这一轮。
\(2.3\)如果这张卡牌已经是最后一张(即\(i\)等于\(n\)),则结束这一轮;否则,考虑下一张卡牌。
请帮助小K求出这一套卡牌在一局游戏中能造成的伤害的期望值。
Input
输入文件的第一行包含一个整数\(T\),代表测试数据组数。
接下来一共\(T\)组数据。
每组数据的第一行包含两个用空格分开的整数\(n\)和\(r\),分别代表卡牌的张数和游戏的轮数。接下来\(n\)行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第\(i\)行的两个数为\(p_{i}\)和\(d_{i}\),分别代表第\(i\)张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证\(p_{i}\)最多包含\(4\)位小数,且为一个合法的概率。
Output
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过\(10^{-8}\)时——即\(\frac{\mid a-o \mid}{a} \le 10^{-8}\)时(其中\(a\)是标准答案,\(o\)是输出),你的输出才会被判为正确。
建议输出\(10\)位小数。
Sample Input
1
3 2
0.5000 2
0.3000 3
0.9000 1
Sample Output
3.2660250000
Hint
对于所有测试数据, \(1 \le T \le 444,1 \le n \le 220,0 \le r \le 132,0 < pi < 1,0 \le d_{i} \le 1000\)。
除非备注中有特殊说明,数据中\(p_{i}\)与\(d_{i}\)均为随机生成。
请注意可能存在的实数精度问题,并采取适当措施。
这题考试的时候状压dp都没有想到。
正解是一个更为神奇的dp,对于每张卡牌独立算贡献。如果第\(i\)张牌发动的概率为\(P_{i}\),那么$$ans = \sum_{i=1}^{n}P_{i}d_{i}$$
怎么求\(P_{i}\)?将\(r\)轮看做\(r\)次机会,\(f_{i,j}\)表示考虑完第\(i\)张卡牌,还剩\(j\)轮的概率。转移$$f_{i,j-1}=f_{i,j-1}+f_{i,j} \times (1-p_{i+1})^{j}$$$$f_{i+1,j-1} = f_{i+1,j-1}+f_{i,j} \times (1-(1-p_{i+1})^{j})$$
其中$$(1-(1-p_{i+1}){j})=p_{i+1}\sum_{k=0}{j-1}(1-p_{i+1})^{k}$$
dp初始状态\(f_{0,r}=1\)。有了这个dp之后我们就可以算出\(P_{i}\)了$$P_{i}=\sum f_{i-1}{j+1} \times (1-(1-p_{i})^{j+1} $$
在转移的时候记录即可。
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
#define maxn (230)
int n,r,d[maxn]; double p[maxn],P[maxn],ans,f[maxn][maxn],ci[maxn][maxn];
inline void dp()
{
for (int i = 1;i <= n;++i)
{
ci[i][0] = 1;
for (int j = 1;j <= r;++j) ci[i][j] = ci[i][j-1]*(1-p[i]);
}
memset(f,0,sizeof(f)); memset(P,0,sizeof(P));
f[0][r] = 1;
for (int i = 0;i < n;++i)
for (int j = r;j >= r-i&&j >= 0;--j)
{
f[i+1][j] += f[i][j]*ci[i+1][j];
if (j)
{
double t = f[i][j]*(1-ci[i+1][j]);
f[i+1][j-1] += t; P[i+1] += t;
}
}
}
int main()
{
freopen("4008.in","r",stdin);
freopen("4008.out","w",stdout);
int T; scanf("%d",&T);
while (T--)
{
scanf("%d %d",&n,&r);
for (int i = 1;i <= n;++i) scanf("%lf %d",p+i,d+i);
dp(); ans = 0;
for (int i = 1;i <= n;++i) ans += P[i]*d[i];
printf("%.10lf\n",ans);
}
fclose(stdin); fclose(stdout);
return 0;
}
BZOJ 4008 亚瑟王的更多相关文章
- bzoj 4008 亚瑟王 - 动态规划 - 概率与期望
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
- bzoj 4008 亚瑟王 期望概率dp
对于这种看起来就比较傻逼麻烦的题,最关键的就是想怎么巧妙的设置状态数组,使转移尽可能的简洁. 一开始我想的是f[i][j]表示到第j轮第i张牌还没有被选的概率,后来发现转移起来特别坑爹,还会有重的或漏 ...
- BZOJ 4008 亚瑟王(概率DP 奥妙重重)
题意 中文题面,就不解释了 分析 显然这道题直接求期望太麻烦,想想转化问题(这转化太神了). 定义f(i,j)f(i,j)f(i,j)表示第iii张卡总共被经过jjj次的概率,有转移方程式 f(i,j ...
- bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望
[bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...
- BZOJ [HNOI2015]亚瑟王 ——期望DP
发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...
- BZOJ 4008: [HNOI2015]亚瑟王( dp )
dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...
- BZOJ 4008 【HNOI2015】 亚瑟王
题目链接:亚瑟王 这道题好神啊TAT--果然我的dp还是太弱了-- 一开始想了半天的直接dp求期望,结果最后WA的不知所云-- 最后去翻了题解,然后发现先算概率,再求期望--新姿势\(get\). 我 ...
- bzoj 4008: [HNOI2015]亚瑟王
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
- 亚瑟王(bzoj 4008)
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
随机推荐
- python学习笔记(六)文件夹遍历,异常处理
python学习笔记(六) 文件夹遍历 1.递归遍历 import os allfile = [] def dirList(path): filelist = os.listdir(path) for ...
- thinkphp连接oracle
配置文件中: //Oracle 测试环境 'DB_TYPE' => 'Oracle', // 数据库类型 'DB_HOST' => '1 ...
- JAVA 强引用、软引用、弱引用、虚引用
http://www.cnblogs.com/absfree/p/5555687.html
- BaseAdapter优化深入分析
BaseAdapter是一个数据适配器,将我们提供的数据格式化为ListView可以显示的数据,BaseAdapter的优化直接影响到ListView的显示效率. 我们都知道,ListView自带有回 ...
- Java泛型方法定义及泛型类型推断
泛型的推断 @Test public void test3(){ //类型推断时使用两个类型的最小公倍数 int x1 = add(3,4); Number x2 = add(3.5,4); Obje ...
- Linux强制踢出登录用户(断线账户剔除)
首先,用w查看登录用户 :: up days, :, users, load average: 1.00, 1.01, 1.00 USER TTY FROM LOGIN@ IDLE JCPU PCPU ...
- mysql left用法
LEFT(str,len) 返回字符串str的最左面len个字符. SELECT LEFT('123456789',5)
- 19个非常有用的Javascript类库
Blackbird是一款非常酷的JavaScript调试工具,带有一个漂亮的界面显示和过滤调试信息. http://www.gscottolson.com/blackbirdjs/ Treesaver ...
- github上建站和使用markdown写文章
积累了那么久,终于成功搭建了github上的个人网站.虽然方法有点巧妙.不是还是建成了 同时学会用markdown写基本的文章.感觉还可以.附带我的github上的静态页面网站的网址:http://z ...
- document library\ picture library\Asset Library的默认文件夹
document library\ picture library\Asset Library的默认文件夹? document library 默认文件夹:Forms picture library默 ...