Description

小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前OIer,小K自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连Spaly都敲不对了,因此,希望你能帮帮小K,让他感受一下当欧洲人是怎样的体验。

本题中我们将考虑游戏的一个简化版模型。

玩家有一套卡牌,共\(n\)张。游戏时,玩家将\(n\)张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为\(1 \sim n\)。本题中,顺序已经确定,即为输入的顺序。

每张卡牌都有一个技能。第\(i\)张卡牌的技能发动概率为\(p_{i}\),如果成功发动,则会对敌方造成\(d_{i}\)点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,\(p_{i}\)不会为\(0\),也不会为\(1\),即\(0<p_{i}<1\)。

一局游戏一共有\(r\)轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:

\(1\)如果这张卡牌在这一局游戏中已经发动过技能,则

\(1.1\) 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌);

否则(是最后一张),结束这一轮游戏。

\(2\)否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张

\(2.1\)将其以\(p_{i}\)的概率发动技能。

\(2.2\)如果技能发动,则对敌方造成\(d_{i}\)点伤害,并结束这一轮。

\(2.3\)如果这张卡牌已经是最后一张(即\(i\)等于\(n\)),则结束这一轮;否则,考虑下一张卡牌。

请帮助小K求出这一套卡牌在一局游戏中能造成的伤害的期望值。

Input

输入文件的第一行包含一个整数\(T\),代表测试数据组数。

接下来一共\(T\)组数据。

每组数据的第一行包含两个用空格分开的整数\(n\)和\(r\),分别代表卡牌的张数和游戏的轮数。接下来\(n\)行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第\(i\)行的两个数为\(p_{i}\)和\(d_{i}\),分别代表第\(i\)张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证\(p_{i}\)最多包含\(4\)位小数,且为一个合法的概率。

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过\(10^{-8}\)时——即\(\frac{\mid a-o \mid}{a} \le 10^{-8}\)时(其中\(a\)是标准答案,\(o\)是输出),你的输出才会被判为正确。

建议输出\(10\)位小数。

Sample Input

1

3 2

0.5000 2

0.3000 3

0.9000 1

Sample Output

3.2660250000

Hint

对于所有测试数据, \(1 \le T \le 444,1 \le n \le 220,0 \le r \le 132,0 < pi < 1,0 \le d_{i} \le 1000\)。

除非备注中有特殊说明,数据中\(p_{i}\)与\(d_{i}\)均为随机生成。

请注意可能存在的实数精度问题,并采取适当措施。

这题考试的时候状压dp都没有想到。

正解是一个更为神奇的dp,对于每张卡牌独立算贡献。如果第\(i\)张牌发动的概率为\(P_{i}\),那么$$ans = \sum_{i=1}^{n}P_{i}d_{i}$$

怎么求\(P_{i}\)?将\(r\)轮看做\(r\)次机会,\(f_{i,j}\)表示考虑完第\(i\)张卡牌,还剩\(j\)轮的概率。转移$$f_{i,j-1}=f_{i,j-1}+f_{i,j} \times (1-p_{i+1})^{j}$$$$f_{i+1,j-1} = f_{i+1,j-1}+f_{i,j} \times (1-(1-p_{i+1})^{j})$$

其中$$(1-(1-p_{i+1}){j})=p_{i+1}\sum_{k=0}{j-1}(1-p_{i+1})^{k}$$

dp初始状态\(f_{0,r}=1\)。有了这个dp之后我们就可以算出\(P_{i}\)了$$P_{i}=\sum f_{i-1}{j+1} \times (1-(1-p_{i})^{j+1} $$

在转移的时候记录即可。

#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; #define maxn (230)
int n,r,d[maxn]; double p[maxn],P[maxn],ans,f[maxn][maxn],ci[maxn][maxn]; inline void dp()
{
for (int i = 1;i <= n;++i)
{
ci[i][0] = 1;
for (int j = 1;j <= r;++j) ci[i][j] = ci[i][j-1]*(1-p[i]);
}
memset(f,0,sizeof(f)); memset(P,0,sizeof(P));
f[0][r] = 1;
for (int i = 0;i < n;++i)
for (int j = r;j >= r-i&&j >= 0;--j)
{
f[i+1][j] += f[i][j]*ci[i+1][j];
if (j)
{
double t = f[i][j]*(1-ci[i+1][j]);
f[i+1][j-1] += t; P[i+1] += t;
}
}
} int main()
{
freopen("4008.in","r",stdin);
freopen("4008.out","w",stdout);
int T; scanf("%d",&T);
while (T--)
{
scanf("%d %d",&n,&r);
for (int i = 1;i <= n;++i) scanf("%lf %d",p+i,d+i);
dp(); ans = 0;
for (int i = 1;i <= n;++i) ans += P[i]*d[i];
printf("%.10lf\n",ans);
}
fclose(stdin); fclose(stdout);
return 0;
}

BZOJ 4008 亚瑟王的更多相关文章

  1. bzoj 4008 亚瑟王 - 动态规划 - 概率与期望

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

  2. bzoj 4008 亚瑟王 期望概率dp

    对于这种看起来就比较傻逼麻烦的题,最关键的就是想怎么巧妙的设置状态数组,使转移尽可能的简洁. 一开始我想的是f[i][j]表示到第j轮第i张牌还没有被选的概率,后来发现转移起来特别坑爹,还会有重的或漏 ...

  3. BZOJ 4008 亚瑟王(概率DP 奥妙重重)

    题意 中文题面,就不解释了 分析 显然这道题直接求期望太麻烦,想想转化问题(这转化太神了). 定义f(i,j)f(i,j)f(i,j)表示第iii张卡总共被经过jjj次的概率,有转移方程式 f(i,j ...

  4. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  5. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

  6. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  7. BZOJ 4008 【HNOI2015】 亚瑟王

    题目链接:亚瑟王 这道题好神啊TAT--果然我的dp还是太弱了-- 一开始想了半天的直接dp求期望,结果最后WA的不知所云-- 最后去翻了题解,然后发现先算概率,再求期望--新姿势\(get\). 我 ...

  8. bzoj 4008: [HNOI2015]亚瑟王

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

  9. 亚瑟王(bzoj 4008)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

随机推荐

  1. Java JDBC批处理插入数据操作(转)

    在此笔记里,我们将看到我们如何可以使用像Statement和PreparedStatement JDBC API来批量在任何数据库中插入数据.此外,我们将努力探索一些场景,如在内存不足时正常运行,以及 ...

  2. Windows 下启动Apache服务(转)

    Win下apache出现问题:“No services installed”安装完apache之后(不是按照默认路径安装的,我的是 D:\ )右下方那个小羽毛图标是没有启动的,左键不好使,而且提示“N ...

  3. RFC 文档(中文与英文)

    http://man.chinaunix.net/develop/rfc/default.htm https://www.rfc-editor.org/retrieve/ http://www.iet ...

  4. careercup-链表 2.5

    2.5 给定两个用链表表示的整数,每个结点包含一个数位.这些数位是反向存放的,也就是个位排在链表首部.编写函数对这两个整数求和,并用链表形式返回结果. 示例: 输入: (7->1->6)+ ...

  5. springMVC工作原理图

  6. iOS UIKit:TableView之表格创建(1)

    Table View是UITableView类的实例对象,其是使用节(section)来描述信息的一种滚动列表.但与普通的表格不同,tableView只有一行,且只能在垂直方向进行滚动.tableVi ...

  7. Django 初探--Django的开发服务器及创建数据库(笔记)

    1.Django的开发服务器 Django框架中包含一些轻量级的web应用服务器,开发web项目时不需再对其配置服务器,Django提供的内置服务器可以在代码修改时自动加载,从而实现网站的迅速开发. ...

  8. Twisted介绍

    Twisted诞生于2000年初,作者为Glyph,目的是为了开发网络游戏. Twisted的历史 Glyph开始采用Java多线程,来开发Twisted Reality,结果多线程使得开发变得复杂, ...

  9. Flex基础相关

    本篇文章转载于http://www.ruanyifeng.com/blog/2015/07/flex-grammar.html,原作者阮一峰. 网页布局(layout)是CSS的一个重点应用. 布局的 ...

  10. Java 设计模式_复合模式(2016-08-31)

    一.什么是复合模式? 在形式上,复合模式确实是多个模式的组合,但满足了这一条并不一定是复合模式,注意它的定义: 将多个模式结合起来形成一个“框架”,以解决一般性问题 一提到“框架”,可能最容易联想到的 ...