You live in a village but work in another village. You decided to follow the straight path between your
house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to
the right of A, and all the rivers lie between them.
Fortunately, there is one “automatic” boat moving smoothly in each river. When you arrive the
left bank of a river, just wait for the boat, then go with it. You’re so slim that carrying you does not
change the speed of any boat.
Days and days after, you came up with the following question: assume each boat is independently
placed at random at time 0, what is the expected time to reach B from A? Your walking speed is
always 1.
To be more precise, for a river of length L, the distance of the boat (which could be regarded as a
mathematical point) to the left bank at time 0 is uniformly chosen from interval [0, L], and the boat
is equally like to be moving left or right, if it’s not precisely at the river bank.
Input
There will be at most 10 test cases. Each case begins with two integers n and D, where n (0 ≤ n ≤ 10)
is the number of rivers between A and B, D (1 ≤ D ≤ 1000) is the distance from A to B. Each of the
following n lines describes a river with 3 integers: p, L and v (0 ≤ p < D, 0 < L ≤ D, 1 ≤ v ≤ 100). p
is the distance from A to the left bank of this river, L is the length of this river, v is the speed of the
boat on this river. It is guaranteed that rivers lie between A and B, and they don’t overlap. The last
test case is followed by n = D = 0, which should not be processed.
Output
For each test case, print the case number and the expected time, rounded to 3 digits after the decimal
point.
Print a blank line after the output of each test case.
Sample Input
1 1
0 1 2
0 1
0 0
Sample Output
Case 1: 1.000
Case 2: 1.000

题意:有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,给出N条河的信息,包括起始坐标p,宽度L,以及船的速度。船会往返在河的两岸,人到达河岸是,船的位置是随机的(包括方向)。问说人达到公司所需要的期望时间。

题解:由于有方向我们单纯算过河时间的话,最快的是l/v,最慢的可能是3l/v,期间的时间是线性的,所以期望就是4l/2v=2l/v,加上陆地的单位时间就可以了

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll;
const int N=+;
int main() {
int cas = , n;
double d, p, l, v;
while(~scanf("%d%lf",&n,&d)) {
if(n == && d == ) break;
for(int i = ;i < n; i++) {
scanf("%lf%lf%lf",&p,&l,&v);
d = d - l + l * / v;
}
printf("Case %d: %.3f\n\n", cas++, d);
}
return ;
}

代码

UVA - 12230 Crossing Rivers 概率期望的更多相关文章

  1. UVA 12230 - Crossing Rivers(概率)

    UVA 12230 - Crossing Rivers 题目链接 题意:给定几条河,每条河上有来回开的船,某一天出门,船位置随机,如今要求从A到B,所须要的期望时间 思路:每条河的期望,最坏就是船刚开 ...

  2. UVA - 12230 Crossing Rivers (期望)

    Description You live in a village but work in another village. You decided to follow the straight pa ...

  3. Uva - 12230 Crossing Rivers (数学期望)

    你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在 ...

  4. UVa 12230 - Crossing Rivers(数学期望)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA.12230.Crossing Rivers(期望)

    题目链接 /* 到达一条河时,船在河中的位置是随机的,所以船到达岸边需要的时间在 0~2l/v 均匀分布,所以船到岸的期望为 (0+2l/v)/2 过河需要 l/v 的时间,所以过一条河总的期望为 ( ...

  6. UVA - 12230 Crossing Rivers(过河)(期望)

    题意:从A到B需要经过n条河,已知AB间距离D和每条河的长度L以及在该条河上的船速v,求A到B平均情况下需多长时间.陆地行走速度为1,船的位置和朝向均匀随机. 分析: 1.过一条河,最短时间L/v(无 ...

  7. UVA 12230 Crossing Rivers

    嘟嘟嘟 虽然分类是期望dp,不过好像是最水的 因为在陆地上的时间和概率是固定的,所以只用考虑过河的期望时间. 对于一条河p, l, v,p好像没什么用……不管了,首先期望时间我觉得可以这么算:期望时间 ...

  8. HDU3232 Crossing Rivers 数学期望问题

    Crossing Rivers                                                                                     ...

  9. hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)

    Problem Description   You live in a village but work in another village. You decided to follow the s ...

随机推荐

  1. mysql.connector 事务总结

    mysql.connector事务总结: connection.autocommit = 0 (默认值) 事务处理 使用 connection.commit()方法 #!/usr/bin/env py ...

  2. Android ToolBar标题文字居中的方法

    在项目的开发中,使用苹果手机的产品,出的界面效果图极有可能(我这里是一定)完全是按照苹果的界面风格来出的,例如界面顶部的title文字位置是水平居中 如图: 那么问题来了,当我们使用ToolBar控件 ...

  3. GCC G++ Make CMake自我科普

    Linux下gcc g++ make cmake 联系和区别 C/C++程序从编写到可执行一般经历这几个阶段 编写源代码 编译器编译代码生成目标文件,如.o文件 链接器链接目标文件和其他目标文件/库文 ...

  4. winform右键菜单

    public partial class Form1 : Form { ContextMenuStrip cms; Bitmap bm ; public Form1() { InitializeCom ...

  5. TRS矩阵分解

    transform = TRS T就是transform的最后一列.关于R和S的分解,PBRT给了一个公式:M_(i+1) = (M_i + ((M_i)^T)^(-1))*0.5,直到M收敛.M初始 ...

  6. 三维点集拟合:平面拟合、RANSAC、ICP算法

    ACM算法分类:http://www.kuqin.com/algorithm/20080229/4071.html 一: 拟合一个平面:使用SVD分解,代码里面去找吧 空间平面方程的一般表达式为: A ...

  7. 杭电2060WA

    #include<stdio.h> int main() { int n,num,p,q,i,a[]={2,3,4,5,6,7}; scanf("%d",&n) ...

  8. 【从零开始】【Java】【1】Git和svn

    闲聊 干活快一年了吧,感觉工作中能干的事情也有一点了,但总有种不通透的感觉,查一个问题,能一路查出一堆不明白的东西. 之前新建过文档是记录点点滴滴的知识的,使用上没问题了,但原理什么的还是不懂,想了想 ...

  9. RxSwiftライブラリの作り方 〜Observer/Observable編〜

    RxSwiftライブラリの作り方をご紹介します.一つの記事ですべてを説明するのは非常に厳しいので.まず Observer や Observable といった基本的なコンポーネントとその周辺について.ひ ...

  10. Python 3 print 函数用法总结

    Python 3 print 函数用法总结 1. 输出字符串和数字 print("runoob")    # 输出字符串 runoob print(100)            ...