51nod1085 背包问题【动态规划】
在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
Output
输出可以容纳的最大价值。
Input示例
3 6
2 5
3 8
4 9
Output示例
14
思路:典型的01背包,根据递推关系式dp[i+1][j]=max(dp[ i ][ j ],dp[ i ][ j - w[i] ]+ v[ i ]) 即可求解。
#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int dp[105][10005],c[10005],w[10005];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%d%d",&w[i],&c[i]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
if(j<w[i])
dp[i][j]=dp[i-1][j];
else
dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+c[i]);
}
}
printf("%d\n",dp[n][m]);
return 0;
}
另外我们可以将其优化成一维数组,减少内存。
#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int dp[13000],c[10005],w[10005];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%d%d",&w[i],&c[i]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;++i)
{
for(int j=m;j>=w[i];--j)
{
dp[j]=max(dp[j],dp[j-w[i]]+c[i]);
}
}
printf("%d\n",dp[m]);
return 0;
}
51nod1085 背包问题【动态规划】的更多相关文章
- c语言数据结构:01背包问题-------动态规划
两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...
- PAT1048. Find Coins(01背包问题动态规划解法)
问题描述: Eva loves to collect coins from all over the universe, including some other planets like Mars. ...
- 0-1背包问题——动态规划求解【Python】
动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最 ...
- 51Nod--1085背包问题
1085 背包问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2--Wn(Wi为整 ...
- 背包问题(动态规划 C/C++)
Description 卖方:这件商品14元 买方:给你20元 卖方:不好意思,我的零钱不够 买方:好吧,这是15元,剩的当小费 当到一个地方旅游时,如果你买东西的地方不支持信用,带零钱还是非常有用的 ...
- 【C/C++】01背包问题/动态规划
按小蓝书上写的大数据情况下没过,按解答区一个大佬的修改了过了 #include <bits/stdc++.h> using namespace std; class Solution { ...
- Java-01背包问题-动态规划-递归和非递归实现
国际惯例,先上代码,粗略分析: package com.bag; /** * Author: lihao * Date:2017/8/31 * Description: */ public class ...
- 【动态规划】【C/C++】简单的背包问题
简单的背包问题 背包问题动态规划中非常经典的一个问题,本文只包含01背包,完全背包和多重背包.更加详尽的背包问题的讲解请参考崔添翼大神的<背包九讲> 简单的01背包 问题导入:新年到了,m ...
- ACM1881 01背包问题应用
01背包问题动态规划应用 acm1881毕业bg 将必须离开的时间限制看作背包容量,先将他们由小到大排序,然后在排完序的数组中对每个实例都从它的时间限制开始(背包容量)到它的延长时间进行遍历: #in ...
随机推荐
- 快速傅立叶变换&HDU 1402
参考http://www.cnblogs.com/v-July-v/archive/2011/08/13/2214132.html <算导> 那么,更快速的多项式乘法就依赖于能否把一个系数 ...
- Android开发趣事记之周期性广告
前些天做了一个应用,由于怕影响用户体验,所以我将广告设定了一下,就是每启动软件8次.就会弹出一次广告. 在上传到应用宝后.竟然得到了这种结果: 看到了吧.无病毒,无广告. 看来审核人员是不会把应用连续 ...
- Android ORMLite ForeignCollection关联外部集合
<Android ORMLite ForeignCollection关联外部集合> Android ORMLite ForeignCollection关联外部集合的功能,适合层 ...
- spring+springmvc+hibernate架构、maven分模块开发样例小项目案例
maven分模块开发样例小项目案例 spring+springmvc+hibernate架构 以用户管理做測试,分dao,sevices,web层,分模块开发測试!因时间关系.仅仅測查询成功.其它的准 ...
- Android之使用MediaMetadataRetriever类获取视频第一帧
一.首先,来介绍一下MediaMetadataRetriever类,此类位于android.media包下,这里,先附上可查看此类的API地址:MediaMetadataRetriever类.大家能够 ...
- luogu1265 公路修建
题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...
- Android - Fragment BackStack 清空
Fragment BackStack 清空 int backStackCount = getFragmentManager().getBackStackEntryCount(); for(int i ...
- CodeForces - 810C(规律)
C. Do you want a date? time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- 2-2 第二天 利用 QQ 浏览器代理调试端口
在没有域名服务器的情况下微信代理的方案 echo "api_key: N3DYn5356kYDvcd67fRxoecKxQV7fTE0" > ~/.ultrahook gem ...
- PCB MongoDB 数据库 Collection集合导出与导入
由于一直以来用微软可视化图形界面习惯了,而MongoDB是命令式操作,而用系统自带CMD操作不方便, 这里介绍一款CMD的替代品,大小100多M. Cmder工具下载 https://github. ...