安装numpy : pip install numpy

numpy数组生成方法总结

In [4]:
import numpy as np

#使用列表生成一个一维数组

data = [1,2,3,4,5]

x = np.array(data)

print(x)

print(x.dtype) #打印数组类型

print(type(x))
[1 2 3 4 5]

int32

<class 'numpy.ndarray'>
In [6]:
import numpy as np

#使用列表生成一个二维数组

data = [[1,2], [3,4], [5,6]]

x = np.array(data)

print(x)

print(x.dtype)

print(x.ndim) #打印数组维度

print(x.shape) #打印数组各个维度的长度

print(type(x))
[[1 2]

[3 4]

[5 6]]

int32

2

(3, 2)

<class 'numpy.ndarray'>
In [16]:
import numpy as np

#使用zeros创建一个长度为4, 元素为0的一维数组

x = np.zeros(4)

print(x)

#创建一个二维数组, 一维长度为2, 二维长度为3, 元素为0的数组

x = np.zeros((2,3))

print(x)

#使用ones创建一个二维数组, 一维长度为2, 二维长度为3, 元素为1的数组

x = np.ones((2,3))

print(x)

#使用empty创建一个二维数组, 一维长度为3, 二维长度为3, 元素为初始化的数组

y = np.empty((3,3))

print(y)

#使用arange生成连续元素

a = np.arange(5)

print(a)

b = np.arange(1,5,2)

print(b)
[ 0.  0.  0.  0.]

[[ 0. 0. 0.]

[ 0. 0. 0.]]

[[ 1. 1. 1.]

[ 1. 1. 1.]]

[[ 2.97907948e-317 2.69387831e-316 8.66647269e-317]

[ 2.48185956e-315 2.48185956e-315 2.48185909e-315]

[ 0.00000000e+000 0.00000000e+000 6.52072824e+091]]

[0 1 2 3 4]

[1 3]

reshape用法:

In [2]:
import numpy as np

#二维数组

a = np.arange(10).reshape(2,5)

print(a)

print("\n")

#三维数组

a = np.arange(12).reshape(2,2,3)

print(a)
[[0 1 2 3 4]

[5 6 7 8 9]] [[[ 0 1 2]

[ 3 4 5]] [[ 6 7 8]

[ 9 10 11]]]

基本运算:

数组的算术运算是按照元素的

In [9]:
import numpy as np

a = np.array([30,40,50,60])

b = np.arange(4) print(a)

print(b)

print("\na-b:")

#俩个数据相减

c = a - b

print(c)

print("\nb2:")

#b数组二次方

print(b
2)

#比较

print("\na<45:")

print(a<45)
[30 40 50 60]

[0 1 2 3] a-b:

[30 39 48 57] b**2:

[0 1 4 9] a<45:

[ True True False False]

numpy中的*是按元素计算的, 如果矩阵乘法, 需要调用dot函数

In [12]:
import numpy as np

a = np.array([

[1, 2],

[3, 4]

]) b = np.array([

[1,1],

[0,4]

]) #运算

print("a
b:")

print(a*b) #dot运算

print("\ndot(a,b):")

print(np.dot(a,b))
a*b:

[[ 1 2]

[ 0 16]] dot(a,b):

[[ 1 9]

[ 3 19]]

axis参数用法:

In [19]:
import numpy as np

a = np.arange(12).reshape(2,2,3)

print(a)

print("计算第一维度和:")

print(a.sum(axis=0))

print("计算第二维度和:")

print(a.sum(axis=1))

print("计算第三维度和:")

print(a.sum(axis=2)) #说白了就是说计算第一维度的时候, 把2,3下标值一样的, 第一下标值不一样的加在一起, 重新生成一个数组, 以此类推
[[[ 0  1  2]

[ 3 4 5]] [[ 6 7 8]

[ 9 10 11]]]

计算第一维度和:

[[ 6 8 10]

[12 14 16]]

计算第二维度和:

[[ 3 5 7]

[15 17 19]]

计算第三维度和:

[[ 3 12]

[21 30]]
In [20]:
import numpy as np

a = np.arange(12).reshape(3,4)

print(a)

print("找出第一维度的最小值:")

print(a.min(axis=0))

print("找出第二维度的最小值:")

print(a.min(axis=1))
[[ 0  1  2  3]

[ 4 5 6 7]

[ 8 9 10 11]]

找出第一维度的最小值:

[0 1 2 3]

找出第二维度的最小值:

[0 4 8]
In [21]:
import numpy as np

a = np.arange(12).reshape(3,4)

print(a)

print("计算第一维度的累加值:")

print(a.cumsum(axis=0))

print("计算第二维度的累加值:")

print(a.cumsum(axis=1))
[[ 0  1  2  3]

[ 4 5 6 7]

[ 8 9 10 11]]

计算第一维度的累加值:

[[ 0 1 2 3]

[ 4 6 8 10]

[12 15 18 21]]

计算第二维度的累加值:

[[ 0 1 3 6]

[ 4 9 15 22]

[ 8 17 27 38]]

通用函数用法:

In [22]:
import numpy as np

a = np.arange(3)

print(a) print(np.exp2(a)) #输出以2weidi
[0 1 2]

[ 1. 2. 4.]

python3 numpy基本用法归纳总结的更多相关文章

  1. 比较合并工具vimdiff的主要用法归纳

    参考:https://www.ibm.com/developerworks/cn/linux/l-vimdiff/ vimdiff主要用法归纳如下:   1.打开文件 vimdiff file1 fi ...

  2. until与till的用法归纳

    until与till的用法归纳 崔荣斌 until和till两者都可作介词.连词,一般情况下可以互换使用.用于肯定句时,主句的动词只用延续性的,它所表示的动作一直延续到till或until表示的时间为 ...

  3. python3 字典常见用法总结

    python3 字典常见用法总结 Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型. 一.创建字典 字典由键和对应值成对组成.字典也被称作关联数组或哈希表 ...

  4. Python3 range() 函数用法

    Python3 range() 函数用法  Python3 内置函数 Python3 range() 函数返回的是一个可迭代对象(类型是对象),而不是列表类型, 所以打印的时候不会打印列表. Pyth ...

  5. 数据分析-numpy的用法

    一.jupyter notebook 两种安装和启动的方式: 第一种方式: 命令行安装:pip install jupyter 启动:cmd 中输入 jupyter notebook 缺点:必须手动去 ...

  6. numpy用法归纳

    1.生成数组 import numpy as np 把python列表转换为数组 >>> np.array([1, 2, 3]) array([1, 2, 3]) 把python的r ...

  7. numpy常用用法总结

    numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...

  8. numpy.where() 用法详解

    numpy.where (condition[, x, y]) numpy.where() 有两种用法: 1. np.where(condition, x, y) 满足条件(condition),输出 ...

  9. numpy.loadtxt用法

    numpy.loadtxt(fname, dtype=, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None ...

随机推荐

  1. Linux系列-安装经常使用软件

    安装JDK: 理论篇: 一.下载JDK 二.安装 ①复制到/usr/java/路径下 [plain] view plaincopy #mkdir /usr/java/ #cp jdk-7u25-lin ...

  2. Android中的帧动画与补间动画的使用

    前言 在日常开发中,我们有时候须要一些好看的动画效果,这时能够充分利用Android提供的这几种动画来实现. Android提供了3种类型的动画: 补间动画:补间动画能够应用于View,让你能够定义一 ...

  3. TextView-shadow 阴影实现

    直接上代码 1)实现普通效果 <TextView android:layout_width="match_parent" android:layout_height=&quo ...

  4. Android时间对话框TimePickerDialog介绍

    目前网上流行着很多对“时间对话框TimePickerDialog”的讲解文章,但感觉都不是很详细.这里详细对该方面的知识进行介绍,旨在帮助初学者能够快速掌握该项技术. 首先要做的是声明一个日历类的对象 ...

  5. 浅析C#组件编程中的一些小细节

    控件与组件的区别(Control&Component的区别) 作者:作者不详  发布日期:2011-06-30 12:08:41 控件与组件的区别(Control&Component的 ...

  6. Java Web学习总结(12)——使用Session防止表单重复提交

    在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...

  7. Could not find action or result: There is no Action mapped for namespace [/] and action name [GetG

    Could not find action or result: /car/GetGpsDataAction  There is no Action mapped for namespace [/] ...

  8. Java vs C++:子类覆盖父类函数时缩小可访问性的不同设计

    Java 和 C++ 都是面向对象的语言,允许对象之间的继承.两个语言的继承都设置有允许子类覆盖父类的“虚函数”,加引号是因为 Java 中没有虚函数这一术语,但是我们的确可以把 Java 的所有函数 ...

  9. Codeforces Round #460 (Div. 2) E. Congruence Equation (CRT+数论)

    题目链接: http://codeforces.com/problemset/problem/919/E 题意: 让你求满足 \(na^n\equiv b \pmod p\) 的 \(n\) 的个数. ...

  10. 卡塔兰数(Catalan)

    卡塔兰数(Catalan) 原理: 令h(0)=1,h(1)=1. 卡塔兰数满足递推式:h(n)=h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0)(n>=2) ...