DGA ngram kmeans+TSNE用于绘图
# -*- coding:utf-8 -*- import sys
import re
import numpy as np
from sklearn.externals import joblib
import csv
import matplotlib.pyplot as plt
import os
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import cross_validation
import os
from sklearn.naive_bayes import GaussianNB
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE #处理域名的最小长度
MIN_LEN=10 #随机程度
random_state = 170 def load_alexa(filename):
domain_list=[]
csv_reader = csv.reader(open(filename))
for row in csv_reader:
domain=row[1]
if domain >= MIN_LEN:
domain_list.append(domain)
return domain_list def load_dga(filename):
domain_list=[]
#xsxqeadsbgvpdke.co.uk,Domain used by Cryptolocker - Flashback DGA for 13 Apr 2017,2017-04-13,
# http://osint.bambenekconsulting.com/manual/cl.txt
with open(filename) as f:
for line in f:
domain=line.split(",")[0]
if domain >= MIN_LEN:
domain_list.append(domain)
return domain_list def nb_dga():
x1_domain_list = load_alexa("../data/top-1000.csv")
x2_domain_list = load_dga("../data/dga-cryptolocke-1000.txt")
x3_domain_list = load_dga("../data/dga-post-tovar-goz-1000.txt") x_domain_list=np.concatenate((x1_domain_list, x2_domain_list,x3_domain_list)) y1=[0]*len(x1_domain_list)
y2=[1]*len(x2_domain_list)
y3=[2]*len(x3_domain_list) y=np.concatenate((y1, y2,y3)) print x_domain_list
cv = CountVectorizer(ngram_range=(2, 2), decode_error="ignore",
token_pattern=r"\w", min_df=1)
x= cv.fit_transform(x_domain_list).toarray() clf = GaussianNB()
print cross_validation.cross_val_score(clf, x, y, n_jobs=-1, cv=3) def kmeans_dga():
x1_domain_list = load_alexa("../data/dga/top-100.csv")
x2_domain_list = load_dga("../data/dga/dga-cryptolocke-50.txt")
x3_domain_list = load_dga("../data/dga/dga-post-tovar-goz-50.txt") x_domain_list=np.concatenate((x1_domain_list, x2_domain_list,x3_domain_list))
#x_domain_list = np.concatenate((x1_domain_list, x2_domain_list)) y1=[0]*len(x1_domain_list)
y2=[1]*len(x2_domain_list)
y3=[1]*len(x3_domain_list) y=np.concatenate((y1, y2,y3))
#y = np.concatenate((y1, y2)) #print x_domain_list cv = CountVectorizer(ngram_range=(2, 2), decode_error="ignore",
token_pattern=r"\w", min_df=1)
x= cv.fit_transform(x_domain_list).toarray()
model=KMeans(n_clusters=2, random_state=random_state)
y_pred = model.fit_predict(x)
#print y_pred tsne = TSNE(learning_rate=100)
x=tsne.fit_transform(x)
print x
print x_domain_list for i,label in enumerate(x):
#print label
x1,x2=x[i]
if y_pred[i] == 1:
plt.scatter(x1,x2,marker='o')
else:
plt.scatter(x1, x2,marker='x')
#plt.annotate(label,xy=(x1,x2),xytext=(x1,x2)) plt.show() if __name__ == '__main__':
#nb_dga()
kmeans_dga()
DGA ngram kmeans+TSNE用于绘图的更多相关文章
- php 用于绘图使用的颜色数组
$colorArr = array(0x912CEE, 0x99ff00, 0x312520, 0x801dae, 0x25f8cb, 0xCC3333, 0x808080, 0xa29b7c, 0x ...
- IOS 绘图教程Quartz2D
http://www.cocoachina.com/industry/20140115/7703.html http://www.cnblogs.com/wendingding/p/3803020.h ...
- tsne官方论文代码解读和使用
MLGB,人生就是矫情,充满冲动,充满热恋. tsne的08年的论文看了几遍,发现原理还是蛮简单的,能想到还是不容易(人生的战场是星辰大海,但我们的贡献就是也就是宇宙尘埃) 怎么说呢,现在真的是一个好 ...
- K-means Algorithm
在监督学习中,有标签信息协助机器学习同类样本之间存在的共性,在预测时只需判定给定样本与哪个类别的训练样本最相似即可.在非监督学习中,不再有标签信息的指导,遇到一维或二维数据的划分问题,人用肉眼就很容易 ...
- iOS开发--绘图教程
本文是<Programming iOS5>中Drawing一章的翻译,考虑到主题完整性,翻译版本中加入了一些书中未涉及到的内容.希望本文能够对你有所帮助. 本文由海水的味道翻译整理,转载请 ...
- iOS绘图教程 (转,拷贝以记录)
本文是<Programming iOS5>中Drawing一章的翻译,考虑到主题完整性,在翻译过程中我加入了一些书中没有涉及到的内容.希望本文能够对你有所帮助. 转自:http://www ...
- MfC基础--绘图基础--win32
1.vc使用的控件分为三类: windows标准控件--MFC对这些进行了再封装 ActiveX 控件 其他MFC控件类 2.CWind是所有窗口的基类 3.GDI也属于一种API,主要用于绘图,(G ...
- iOS绘图教程
本文是<Programming iOS5>中Drawing一章的翻译,考虑到主题完整性,翻译版本中加入了一些书中未涉及到的内容.希望本文能够对你有所帮助.(本文由海水的味道翻译整理,转载请 ...
- iOS基础 - Quartz 2D绘图
一.Quartz 2D Quartz 2D是一个二维图形绘制引擎,支持iOS环境和Mac OS X环境. Quartz 2D以PDF的规范为基础的图形库,用来绘制二维文字和图形,允许相同的绘图指令在任 ...
随机推荐
- spark Bisecting k-means(二分K均值算法)
Bisecting k-means(二分K均值算法) 二分k均值(bisecting k-means)是一种层次聚类方法,算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大程 ...
- 19.QT对话框(文件对话框,颜色对话框,字体框,自定义对话框)
文件对话框 #include<QFileDialog> //文件对话框 void Dialog::on_pushButton_clicked() { //定义显示文件的类型 窗口标题 可供 ...
- [转]Linux常用命令学习
转自 https://www.cnblogs.com/gaojun/p/3359355.html 1.ls命令 就是list的缩写,通过ls 命令不仅可以查看linux文件夹包含的文件,而且可以查看文 ...
- 制作ubuntu的U盘启动盘
在制作U盘启动盘之前,请各位先格式化你的U盘. 制作U盘启动盘的工具有很多种,我们这里为大家介绍的是用软碟通制作.所有我们需要有这个软件,如果大家没有可以百度“软碟通”,下载安装一个.然后点击打开.在 ...
- .NET XML POST 请求
//请求体,XML参数 string xmlstring = @"<root></root>“; //请求URL string postUrl ="http ...
- 优动漫结合Photoshop怎么画草地?
今天继续技法教学~草地的技法,PS教学~但是很简单,都是默认工具,而且是常用工具VS常用设置.你肯定会学会的! 草地教程,就到这里啦!有兴趣的可以尝试画一画哦,想要Get到更多有关优动漫的信息包括软件 ...
- HDU 1756 Cupid's Arrow( 判断点在多边形的内外 )
链接:传送门 思路:判断每支箭是否在多边形内,计算几何点定位中水题,不清楚下面的代码能不能适用于给定点的顺序不确定( 既不是顺时针又不是逆时针 ) /************************* ...
- [读书笔记] R语言实战 (十四) 主成分和因子分析
主成分分析和探索性因子分析是用来探索和简化多变量复杂关系的常用方法,能解决信息过度复杂的多变量数据问题. 主成分分析PCA:一种数据降维技巧,将大量相关变量转化为一组很少的不相关变量,这些无关变量称为 ...
- B-Tree概念
记录下学习B-Tree: concept:(m-阶) 1. 根节点 孩子数 ( 2 <= N <= m) 根节点key数([m/2] - 1 <= n <= m -1) 2 ...
- 异常值(outlier)
简介 在数据挖掘的过程中,我们可能会经常遇到一些偏离于预测趋势之外的数据,通常我们称之为异常值. 通常将这样的一些数据的出现归为误差.有很多情况会出现误差,具体的情况需要就对待: 传感器故障 -> ...