Sequence Models and Long-Short Term Memory Networks
- LSTM’s in Pytorch
- Example: An LSTM for Part-of-Speech Tagging
- Exercise: Augmenting the LSTM part-of-speech tagger with character-level features
Sequence models are central to NLP: they are models where there is some sort of dependence through time between your inputs. The classical example of a sequence model is the Hidden Markov Model for part-of-speech tagging. Another example is the conditional random field.
LSTM’s in Pytorch
Pytorch’s LSTM expects all of its inputs to be 3D tensors. The semantics of the axes of these tensors is important. The first axis is the sequence itself, the second indexes instances in the mini-batch, and the third indexes elements of the input. We haven’t discussed mini-batching, so lets just ignore that and assume we will always have just 1 dimension on the second axis. If we want to run the sequence model over the sentence “The cow jumped”, our input should look like
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim torch.manual_seed(1) lstm=nn.LSTM(3,3) #Input dim is 3, output dim is 3
inputs = [torch.randn(1, 3) for _ in range(5)] # make a sequence of length 5 # initialize the hidden state.
hidden = (torch.randn(1, 1, 3),
torch.randn(1, 1, 3)) for i in inputs:
out,hidden=lstm(i.view(1,1,-1),hidden) inputs=torch.cat(inputs).view(len(inputs),1,-1)
hidden=(torch.randn(1,1,3),torch.randn(1,1,3))
out,hidden=lstm(inputs,hidden)
print(out)
print(hidden)
Example: An LSTM for Part-of-Speech Tagging
Prepare data:
def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long) training_data = [
("The dog ate the apple".split(), ["DET", "NN", "V", "DET", "NN"]),
("Everybody read that book".split(), ["NN", "V", "DET", "NN"])
]
word_to_ix = {}
for sent, tags in training_data:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
print(word_to_ix)
tag_to_ix = {"DET": 0, "NN": 1, "V": 2} # These will usually be more like 32 or 64 dimensional.
# We will keep them small, so we can see how the weights change as we train.
EMBEDDING_DIM = 6
HIDDEN_DIM = 6
Create the model:
class LSTMTagger(nn.Module): def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
super(LSTMTagger, self).__init__()
self.hidden_dim = hidden_dim self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding_dim, hidden_dim) # The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden() def init_hidden(self):
# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly
# why they have this dimensionality.
# The axes semantics are (num_layers, minibatch_size, hidden_dim)
return (torch.zeros(1, 1, self.hidden_dim),
torch.zeros(1, 1, self.hidden_dim)) def forward(self, sentence):
embeds = self.word_embeddings(sentence)
lstm_out, self.hidden = self.lstm(
embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = F.log_softmax(tag_space, dim=1)
return tag_scores
Train the model:
model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1) # See what the scores are before training
# Note that element i,j of the output is the score for tag j for word i.
# Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs)
print(tag_scores) for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad() # Also, we need to clear out the hidden state of the LSTM,
# detaching it from its history on the last instance.
model.hidden = model.init_hidden() # Step 2. Get our inputs ready for the network, that is, turn them into
# Tensors of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = prepare_sequence(tags, tag_to_ix) # Step 3. Run our forward pass.
tag_scores = model(sentence_in) # Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
loss = loss_function(tag_scores, targets)
loss.backward()
optimizer.step() # See what the scores are after training
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs) # The sentence is "the dog ate the apple". i,j corresponds to score for tag j
# for word i. The predicted tag is the maximum scoring tag.
# Here, we can see the predicted sequence below is 0 1 2 0 1
# since 0 is index of the maximum value of row 1,
# 1 is the index of maximum value of row 2, etc.
# Which is DET NOUN VERB DET NOUN, the correct sequence!
print(tag_scores)
Sequence Models and Long-Short Term Memory Networks的更多相关文章
- LSTM学习—Long Short Term Memory networks
原文链接:https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Understanding LSTM Networks Recurren ...
- LSTM(Long Short Term Memory)
长时依赖是这样的一个问题,当预测点与依赖的相关信息距离比较远的时候,就难以学到该相关信息.例如在句子”我出生在法国,……,我会说法语“中,若要预测末尾”法语“,我们需要用到上下文”法国“.理论上,递归 ...
- [C5W1] Sequence Models - Recurrent Neural Networks
第一周 循环序列模型(Recurrent Neural Networks) 为什么选择序列模型?(Why Sequence Models?) 在本课程中你将学会序列模型,它是深度学习中最令人激动的内容 ...
- Sequence Models
Sequence Models This is the fifth and final course of the deep learning specialization at Coursera w ...
- [C7] Andrew Ng - Sequence Models
About this Course This course will teach you how to build models for natural language, audio, and ot ...
- Sequence Models 笔记(一)
1 Recurrent Neural Networks(循环神经网络) 1.1 序列数据 输入或输出其中一个或两个是序列构成.例如语音识别,自然语言处理,音乐生成,感觉分类,dna序列,机器翻译,视频 ...
- 《Sequence Models》课堂笔记
Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一 ...
- 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记
第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...
- 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention
Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...
随机推荐
- PatentTips - Fast awake from low power mode
BACKGROUND Electronic devices, such as electronic book readers ("eBook reader devices"), c ...
- [Javascript] Understand Function Composition By Building Compose and ComposeAll Utility Functions
Function composition allows us to build up powerful functions from smaller, more focused functions. ...
- Ubuntu,右键->在终端中打开(apt-install,或者手动增加右键菜单)
方法一: sudo apt-get install nautilus-open-terminal 然后重启 方法二: Ubuntu中,默认右键菜单中没有“在终端中打开”.要想添加此菜单,可以在主目录中 ...
- Android资源之图像资源(图层图像资源)
曾经看别人的程序的drawable目录里有xml资源,说实话第一次见到这种xml图像资源时,我真心不知道是干什么的.抽出时间学习了一下图像资源.才了解了这类图像资源的妙用. 以下我来分享一下这部分知识 ...
- html5常用标签table表格布局
html5常用标签table表格布局 一.总结 一句话总结: 二.html5常用标签table表格布局 用表格显示信息调理清楚,使浏览者一目了然.表格在网页中还有协助布局的作用,可以把文字.图像等组织 ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- CocoaPods详解之(一)----使用篇
CocoaPods详解之----使用篇 作者:wangzz 原文地址:http://blog.csdn.net/wzzvictory/article/details/18737437 一.什么是Coc ...
- 在jsp页面里面设置全局引用文件
head.jsp文件 将项目中所需要用到次数比较多的的插件,库等,同意放在一个jsp文件里面,命名为head.jsp文件,相当于一个全局的 <%@ page language="jav ...
- 【BZOJ 1027】[JSOI2007]合金
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1027 [题意] [题解] 因为和为1; 所以只要知道两个属性第三个属性就能用1减出来了 ...
- 【非常高%】【codeforces 733B】Parade
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...