Sequence models are central to NLP: they are models where there is some sort of dependence through time between your inputs. The classical example of a sequence model is the Hidden Markov Model for part-of-speech tagging. Another example is the conditional random field.

LSTM’s in Pytorch

Pytorch’s LSTM expects all of its inputs to be 3D tensors. The semantics of the axes of these tensors is important. The first axis is the sequence itself, the second indexes instances in the mini-batch, and the third indexes elements of the input. We haven’t discussed mini-batching, so lets just ignore that and assume we will always have just 1 dimension on the second axis. If we want to run the sequence model over the sentence “The cow jumped”, our input should look like

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim torch.manual_seed(1) lstm=nn.LSTM(3,3) #Input dim is 3, output dim is 3
inputs = [torch.randn(1, 3) for _ in range(5)] # make a sequence of length 5 # initialize the hidden state.
hidden = (torch.randn(1, 1, 3),
torch.randn(1, 1, 3)) for i in inputs:
out,hidden=lstm(i.view(1,1,-1),hidden) inputs=torch.cat(inputs).view(len(inputs),1,-1)
hidden=(torch.randn(1,1,3),torch.randn(1,1,3))
out,hidden=lstm(inputs,hidden)
print(out)
print(hidden)

Example: An LSTM for Part-of-Speech Tagging

Prepare data:

def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long) training_data = [
("The dog ate the apple".split(), ["DET", "NN", "V", "DET", "NN"]),
("Everybody read that book".split(), ["NN", "V", "DET", "NN"])
]
word_to_ix = {}
for sent, tags in training_data:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
print(word_to_ix)
tag_to_ix = {"DET": 0, "NN": 1, "V": 2} # These will usually be more like 32 or 64 dimensional.
# We will keep them small, so we can see how the weights change as we train.
EMBEDDING_DIM = 6
HIDDEN_DIM = 6

Create the model:

class LSTMTagger(nn.Module):

    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
super(LSTMTagger, self).__init__()
self.hidden_dim = hidden_dim self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding_dim, hidden_dim) # The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden() def init_hidden(self):
# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly
# why they have this dimensionality.
# The axes semantics are (num_layers, minibatch_size, hidden_dim)
return (torch.zeros(1, 1, self.hidden_dim),
torch.zeros(1, 1, self.hidden_dim)) def forward(self, sentence):
embeds = self.word_embeddings(sentence)
lstm_out, self.hidden = self.lstm(
embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = F.log_softmax(tag_space, dim=1)
return tag_scores

Train the model:

model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1) # See what the scores are before training
# Note that element i,j of the output is the score for tag j for word i.
# Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs)
print(tag_scores) for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad() # Also, we need to clear out the hidden state of the LSTM,
# detaching it from its history on the last instance.
model.hidden = model.init_hidden() # Step 2. Get our inputs ready for the network, that is, turn them into
# Tensors of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = prepare_sequence(tags, tag_to_ix) # Step 3. Run our forward pass.
tag_scores = model(sentence_in) # Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
loss = loss_function(tag_scores, targets)
loss.backward()
optimizer.step() # See what the scores are after training
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs) # The sentence is "the dog ate the apple". i,j corresponds to score for tag j
# for word i. The predicted tag is the maximum scoring tag.
# Here, we can see the predicted sequence below is 0 1 2 0 1
# since 0 is index of the maximum value of row 1,
# 1 is the index of maximum value of row 2, etc.
# Which is DET NOUN VERB DET NOUN, the correct sequence!
print(tag_scores)

Sequence Models and Long-Short Term Memory Networks的更多相关文章

  1. LSTM学习—Long Short Term Memory networks

    原文链接:https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Understanding LSTM Networks Recurren ...

  2. LSTM(Long Short Term Memory)

    长时依赖是这样的一个问题,当预测点与依赖的相关信息距离比较远的时候,就难以学到该相关信息.例如在句子”我出生在法国,……,我会说法语“中,若要预测末尾”法语“,我们需要用到上下文”法国“.理论上,递归 ...

  3. [C5W1] Sequence Models - Recurrent Neural Networks

    第一周 循环序列模型(Recurrent Neural Networks) 为什么选择序列模型?(Why Sequence Models?) 在本课程中你将学会序列模型,它是深度学习中最令人激动的内容 ...

  4. Sequence Models

    Sequence Models This is the fifth and final course of the deep learning specialization at Coursera w ...

  5. [C7] Andrew Ng - Sequence Models

    About this Course This course will teach you how to build models for natural language, audio, and ot ...

  6. Sequence Models 笔记(一)

    1 Recurrent Neural Networks(循环神经网络) 1.1 序列数据 输入或输出其中一个或两个是序列构成.例如语音识别,自然语言处理,音乐生成,感觉分类,dna序列,机器翻译,视频 ...

  7. 《Sequence Models》课堂笔记

    Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一 ...

  8. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记

    第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...

  9. 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention

    Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...

随机推荐

  1. 开源 免费 java CMS - FreeCMS1.9 会员管理

    项目地址:http://www.freeteam.cn/ 会员管理 1. 会员管理 从左側管理菜单点击会员管理进入. 2. 加入会员 在会员列表下方点击"加入"button. 填写 ...

  2. STL map 按key值和按value值排序

    map是用来存放<key, value>键值对的数据结构,能够非常方便高速的依据key查到对应的value. 假如存储水果和其单位价格.我们用map来进行存储就是个不错的选择. 我们这样定 ...

  3. JM-1 手机网站开发测试环境搭建

    JM-1 手机网站开发测试环境搭建 一.总结 一句话总结:WEB服务器环境可实现局域网内轻松访问.360wifi可以实现局域网. 二.微网站开发环境: 1.把微网站放到本机wamp环境下,用pc浏览器 ...

  4. Android 用SSL构建安全的Socket

    SSL(安全套接层)是 Netscape公司在1994年开发的,最初用于WEB浏览器,为浏览器与服务器间的数据传递提供安全保障,提供了加密.来源认证和数据完整性的功能.现在SSL3.0得到了普遍的使用 ...

  5. [Flow] The Fundamentals of Flow

    Install: yarn global add flow-typed /*get type defination*/ yarn add flow-bin -D For example you hav ...

  6. MKNetworkKit的断点续传SIDownloader下载

    comefrom:http://cache.baiducontent.com/c?m=9f65cb4a8c8507ed4fece763105392230e54f73d6f8b9042238fce098 ...

  7. LaunchImage启动黑屏-模拟器可以,但是真机黑屏

    名称和尺寸都是对的,就是不显示.结果美工重新做一张图片就行了,想了半天都没想到是图片本身等问题啊

  8. XMPP之ios即时通讯客户端开发-创建工程添加XMPPFramework及其他框架(三)

    XMPPFramework GitHub: https://github.com/robbiehanson/XMPPFramework 获取源代码 git clone https://github.c ...

  9. HDU 1224 Free DIY Tour - 最短路

    传送门 题目大意: 一个有向图(n + 1相当于1),每个点有一个权值(可以认为1和n+1权值为0),求从1走到n+1(相当于走回1)的最大路径权值和是多少,输出方案. 题目分析: 最短路问题,输出方 ...

  10. ElasticSearch:分析器

    ElasticSearch入门 第七篇:分析器 这是ElasticSearch 2.4 版本系列的第七篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch El ...