Python汉诺塔问题
汉诺塔描述
古代有一座汉诺塔,塔内有3个座A、B、C,A座上有n个盘子,盘子大小不等,大的在下,小的在上,如图所示。有一个和尚想把这n个盘子从A座移到C座,但每次只能移动一个盘子,并且自移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座来放盘子。
代码:
import turtle
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(10)
t.speed(100)
t.goto(400*(k-1), 100)
t.down()
t.goto(400*(k-1), -100)
t.goto(400*(k-1)-20, -100)
t.goto(400*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的poles[0]
drawpole_1(1)#画出汉诺塔的poles[1]
drawpole_1(2)#画出汉诺塔的poles[2]
def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,8-i)
plates[i].goto(-400,-90+20*i)
plates[i].showturtle()
return plates
def pole_stack():#制造poles的栈
poles=[Stack() for i in range(3)]
return poles
def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-1)*400,150)
plates[mov].goto((tp-1)*400,150)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-1)*400,-90+20*l)
def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole)
myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()
实现效果图:

---------------------
作者:陶晨毅
来源:CSDN
原文:https://blog.csdn.net/beerbread134/article/details/69226991
版权声明:本文为博主原创文章,转载请附上博文链接!
Python汉诺塔问题的更多相关文章
- python汉诺塔问题的递归理解
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...
- Python汉诺塔问题递归算法与程序
汉诺塔问题: 问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱 ...
- Python汉诺塔
import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.it ...
- Python 汉诺塔
在汉诺塔游戏中,有三个分别命名为A.B.C得塔座,几个大小各不相同,从小到大一次编号得圆盘,每个原盘中间有一个小孔.最初,所有得圆盘都在A塔座上,其中最大得圆盘在最下面,然后是第二大,以此类推. 游戏 ...
- Python 汉诺塔游戏
#n 多少个盘子 def hanoi(n,x,y,z): : print(x,'→',z) else: hanoi(n-, x, z,y) #将前n-1个盘子从X移动到y上 print(x,'→',z ...
- [python]汉诺塔问题
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏.该游戏是在一块铜板装置上,有三根杆(编号A.B.C),在A杆自下而上.由大到小按顺序放置64个金盘(如下图).游戏的目标:把A杆上的金盘全部 ...
- Python汉诺塔求解
1 def hanoi(n,a,b,c): 2 3 if(n>0): 4 5 hanoi(n-1,a,b,c) 6 7 print("Move disc no:%d from pile ...
- python递归——汉诺塔
汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了 ...
- 1.python算法之汉诺塔
代码如下: #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: 汉诺塔.py @t ...
随机推荐
- winrar目录穿越漏洞
地址: 参考: https://research.checkpoint.com/extracting-code-execution-from-winrar/ POC: https://github.c ...
- git stash pop 冲突,git stash list 中的记录不会自动删除的解决方法
在使用git stash代码时,经常会碰到有冲突的情况,一旦出现冲突的话,系统会认为你的stash没有结束. 导致的结果是git stash list 中的列表依然存在,实际上代码已经pop出来了. ...
- Java 多线程之Timer与ScheduledExecutorService
1.Timer管理延时任务的缺陷 a.以前在项目中也经常使用定时器,比如每隔一段时间清理项目中的一些垃圾文件,每个一段时间进行数据清洗:然而Timer是存在一些缺陷的,因为Timer在执行定时任务时只 ...
- 非常不错的svg教程
介绍的非常详细,也很有调理,内容很详细 适合于初学者学习 http://www.softwhy.com/qiduan/SVG_source/
- JDK8到JDK12各个版本的重要特性整理
JDK8新特性 1.Lambda表达式 2.函数式编程 3.接口可以添加默认方法和静态方法,也就是定义不需要实现类实现的方法 4.方法引用 5.重复注解,同一个注解可以使用多次 6.引入Optiona ...
- Load data local infile 实验报告
1.实验内容: 利用SQL语句“load data local infile”将“pet.txt”文本文件中的数据导入到mysql中 (pet表在数据库menagerie中) 2.实验过程及结果: ( ...
- ASP.NET Core WebApi使用Swagger生成api
引言 在使用asp.net core 进行api开发完成后,书写api说明文档对于程序员来说想必是件很痛苦的事情吧,但文档又必须写,而且文档的格式如果没有具体要求的话,最终完成的文档则完全取决于开发者 ...
- vue-cli3使用webpack-spritesmith配置雪碧图
一.背景问题 项目中如果有大量的小图标,如果不使用阿里的iconfont.UI给一个加一个,加一个引用一个,每个图标虽然很小,但是也是一次请求,每次请求都是消耗性能资源的. 二.解决思路 使用webp ...
- 【Spring-Controller 整理研究】@RequestMapping略解
本文以纯后端的角度,去研究Spring Controller在各种情况的行为,及各种属性的作用. 实验准备 利用https://start.spring.io/快速生成一个开箱即用的小巧spring ...
- 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...