#. 选课

    描述
提交
自定义测试 问题描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b)。一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少?
输入格式 第一行有两个整数N,M用空格隔开。(<=N<=,<=M<=) 接下来的N行,第I+1行包含两个整数ki和si, ki表示第I门课的直接先修课,si表示第I门课的学分。若ki=0表示没有直接先修课(<=ki<=N, <=si<=)。
输出格式 只有一行,选M门课程的最大得分。
样例输入 样例输出 限制与预定 时间限制:1s 空间限制:128mb

maybe right:

#include<cstdio>
using namespace std;
const int maxn=1e3+;
const int maxm=2e3+;
const int INF=1e9;
inline int max(int a,int b){
return a < b ? b : a ;
}
inline void read(int &a){
a=;int b=;char x=getchar();
while(x<''||''<x){if(x=='-')b=-;x=getchar();}
while(''<=x&&x<=''){a=(a<<)+(a<<)+x-'';x=getchar();}
a*=b;
}
int n,m;
int first[maxn],next[maxn],to[maxn],w[maxn],edge_count;
inline void add(int x,int y){
edge_count++;
to[edge_count]=y;
next[edge_count]=first[x];
first[x]=edge_count;
}
int f[maxn][maxm];
void search(int root){
//printf("%d:\n",root);
//f[root][0]=0;
//f[root][1]=w[root];
for(int i=first[root];i;i=next[i]){
search(to[i]);
//if(to[i]==2)printf("%d",root);
for(int j=m+;j;j--){
for(int k=;k<j;k++){
f[root][j]=max(f[root][j],f[root][j-k]+f[ to[i] ][k]);//转移方程:基于分组背包(泛化背包)
}
}
}
for(int i=;i<=m+;i++)f[root][i]+=w[root];//当前背包内没有放入root结点,最后加上
//for(int i=1;i<=m+1;i++)printf("f[%d][%d]%d ",root,i,f[root][i]);putchar('\n');
}
int main()
{
read(n);read(m); //for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)f[i][j]=-INF; for(int i=,fa,c;i<=n;i++){
read(fa);read(w[i]);
add(fa,i);
}
search();//以虚拟结点为根搜索
printf("%d",f[][m+]);//0号结点不能选,所以输出f【0】【m+1】
return ;
}

树上背包O(n*m^2)|| 多叉树转二叉树 || o(n*m)???的更多相关文章

  1. 探险 - 树型dp(背包)/多叉树转二叉树

    题目大意: 国家探险队长 Jack 意外弄到了一份秦始皇的藏宝图,于是,探险队一行人便踏上寻宝之旅,去寻找传说中的宝藏. 藏宝点分布在森林的各处,每个点有一个值,表示藏宝的价值.它们之间由一些小路相连 ...

  2. HDU4044 GeoDefense(有点不一样的树上背包)

    题目大概说一棵n个结点的树,每个结点都可以安装某一规格的一个塔,塔有价格和能量两个属性.现在一个敌人从1点出发但不知道他会怎么走,如果他经过一个结点的塔那他就会被塔攻击失去塔能量的HP,如果HP小于等 ...

  3. luogu 2014 选课 树上背包

    树上背包 #include<bits/stdc++.h> using namespace std; ; const int inf=0x3f3f3f3f; vector<int> ...

  4. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  5. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  6. 【BZOJ】4033: [HAOI2015]树上染色 树上背包

    [题目]#2124. 「HAOI2015」树上染色 [题意]给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大.n<=2000. [算法]树上背包 ...

  7. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  8. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

  9. luogu P2515 [HAOI2010]软件安装 |Tarjan+树上背包

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为MM计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但 ...

  10. 【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)

    树上背包 这应该是一道树上背包裸题吧. 众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的. 但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做 ...

随机推荐

  1. EntityFramework Core笔记:查询数据(3)

    1. 基本查询 1.1 加载全部数据 using System.Linq; using (var context = new LibingContext()) { var roles = contex ...

  2. 使用按钮触发element 时间事件 --时间戳

    本日 本周 本月 本年  时间按钮   date 组件内添加 pickerOptions2: { shortcuts: [ { text: '今日', onClick(picker) { picker ...

  3. [SCOI2006] 数字立方体

    题目类型:三维前缀和+同余方程 传送门:>Here< 题意:给出一个立方体,求有多少个子立方体的和为\(k\)的倍数 解题思路 暴力做法:\(O(n^6)\)枚举子立方体 考虑只枚举长和宽 ...

  4. css 溢出overflow

    css 溢出overflow 当一个元素被设置为固定大小,在这个元素中的内容如果超出元素的界限,就会出现溢出的现象. 通常情况下我们可以通过overflow来控制这个属性. overflow语法定义 ...

  5. Python中的string和bytes的转换

    总的来说,bytes和string的关系是: \(bytes\xrightarrow{decode}string\) \(bytes\xleftarrow{encode}string\) 常见的几种编 ...

  6. unix文件系统中的硬链接和软连接

    硬链接: 一般情况下,文件名和inode号码是"一一对应"关系,每个inode号码对应一个文件名.但是,Unix/Linux系统允许,多个文件名指向同一个inode号码. 这意味着 ...

  7. bzoj3527: [Zjoi2014]力 卷积+FFT

    先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...

  8. MySQL安装-二进制软件包安装

    MySQL 双版本安装 安装mysql AB (RPM)    -mysql官方的RPM包  安装MySQL 5.6.19版本 安装之前需要将系统自带的关于mysql软件全部卸载掉 rpm -e (加 ...

  9. vue-resource的使用,前后端数据交互

    vue-resource的使用,前后端数据交互 1:导入vue与vue-resource的js js下载:   https://pan.baidu.com/s/1fs5QaNwcl2AMEyp_kUg ...

  10. SQL SERVER 2008 服务器登录名、角色、数据库用户、角色、架构的关系

    sql server登录名.服务器角色.数据库用户.数据库角色.架构区别联系 1.一个数据库用户可以对应多个架构(架构是表容器).架构里面包含的是数据库表. 2.一个数据库角色有可能涉及多个架构.数据 ...