#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e7+;
int vis[maxn];
int mu[maxn];
int prime[maxn];
int tot=;
int sum1[maxn];
int sum2[maxn];
void get_mu()
{
mu[]=; vis[]=;
for(int i=;i<maxn;i++)
{
if(!vis[i]) {mu[i]=-; prime[++tot]=i; }
for(int j=;j<=tot && i*prime[j]<maxn;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==) break;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=;i<=tot;i++)
for(int j=prime[i];j<maxn;j+=prime[i])
sum1[j]+=mu[j/prime[i]];
for(int i=;i<=maxn;i++)
sum2[i]=sum2[i-]+sum1[i];
}
int main()
{
get_mu();
int T; cin>>T;
while(T--)
{
int n,m; cin>>n>>m;
ll ans=;
for(int l=,r;l<=min(n,m);l=r+)
{
// r=min(n,m)/(min(n,m)/l); // l-r;
r=min( n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(sum2[r]-sum2[l-]);
}
/*int t=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(vis[__gcd(i,j)]==0) t++;
}
}*/
cout<<ans<<endl;
}
}

P2257 莫比乌斯+整除分块的更多相关文章

  1. BZOJ2301——莫比乌斯&&整除分块

    题目 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 分析 莫比乌斯经典入门题. (我也刚学,就写 ...

  2. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  3. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  4. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  5. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  6. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  7. P2568 莫比乌斯反演+整除分块

    #include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...

  8. 洛谷 - UVA11424 - GCD - Extreme (I) - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么 ...

  9. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

随机推荐

  1. Python标准库--time模块的详解

    time模块 - - -时间获取和转换 在我们学习time模块之前需要对以下的概念进行了解: 时间戳:时间戳是指格林威治时间1970年01月01日00时00分00秒(北京时间1970年01月01日08 ...

  2. JavaScript “函数重载”

    函数重载(function overloading)必须依赖两件事情:判断传入参数数量的能力和判断传入参数类型的能力. JavaScript的每个函数都带有一个仅在这个函数范围内作用的变量argume ...

  3. SQL-51 查找字符串'10,A,B' 中逗号','出现的次数cnt。

    题目描述 查找字符串'10,A,B' 中逗号','出现的次数cnt. SQL: select length('10,A,B')-length(replace('10,A,B',',','')) len ...

  4. ForkJoinPool 源码

    ForkJoinPool----FJP先看task.fork方法,含义是将当前任务,放到当前线程的工作队列中.但是第一次执行这个方法是在主线程中,主线程是不可能被FJP管理的.那么就进入ForkJoi ...

  5. codeforces 1140D(区间dp/思维题)

    D. Minimum Triangulation time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  6. elasticsearch(2) 数据操作——查询

    一 文档 ES面向文档,并且使用JSON作为文档序列化格式,对于ES来说,文档特指根对象序列化成的JSON数据,以唯一ID标识并存储于ES中. 文档元数据 三个必须的元数据节点 1._index   ...

  7. tomcat 内存溢出处理方案

    找到tomcat7w.exe  在java  页 java options 最后添加 -XX:PermSize=256m-XX:MaxPermSize=512m

  8. Session 与 Token 的区别

    1. 为什么要有session的出现?答:是由于网络中http协议造成的,因为http本身是无状态协议,这样,无法确定你的本次请求和上次请求是不是你发送的.如果要进行类似论坛登陆相关的操作,就实现不了 ...

  9. 北大poj- 1008

    Maya Calendar Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 80956   Accepted: 24892 D ...

  10. python3 操作配置文件

    一 json文件 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于ECMAScript的一个子集. JSON采用完全独立于语言的文本格式,但是也使用 ...