http://www.lydsy.com/JudgeOnline/problem.php?id=1257

k%i=k-int(k/i)*i

除法分块,对于相同的k/i用等差序列求和来做

#include<cstdio>
#include<iostream> using namespace std; int main()
{
int n,k;
scanf("%d%d",&n,&k);
long long ans=;
if(n>k)
{
ans=1ll*(n-k)*k;
n=k;
}
int l,r;
int t;
for(l=;l<=n;l=r+)
{
t=k/l; r=k/t;
if(r>n) r=n;
ans+=1ll*k*(r-l+)-1ll*(r-l+)*(l+r)/*t;
}
cout<<ans;
}

1257: [CQOI2007]余数之和sum

Time Limit: 5 Sec  Memory Limit: 162 MB
Submit: 5126  Solved: 2377
[Submit][Status][Discuss]

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

HINT

50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9

bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum的更多相关文章

  1. BZOJ1257 [CQOI2007]余数之和sum

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  2. bzoj1257: [CQOI2007]余数之和sum(数论)

    非常经典的题目... 要求 则有 实际上 最多只有2*sqrt(k)种取值,非常好证明 因为>=sqrt(k)的数除k下取整得到的数一定<=sqrt(k),而k除以<=sqrt(k) ...

  3. [BZOJ1257][CQOI2007]余数之和sum 数学+分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257 题目所求为$$Ans=\sum_{i=1}^nk%i$$ 将其简单变形一下$$Ans ...

  4. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  5. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  6. BZOJ1257 CQOI2007 余数之和 【数分块】

    BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...

  7. 【bzoj1257】[CQOI2007]余数之和sum

    [bzoj1257][CQOI2007]余数之和sum 2014年9月1日1,9161 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod ...

  8. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  9. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

随机推荐

  1. struts2 Action生命周期

    Struts2.0中的对象既然都是线程安全的,都不是单例模式,那么它究竟何时创建,何时销毁呢? 这个和struts2.0中的配置有关,我们来看struts.properties ### if spec ...

  2. 18_集合框架_第18天_集合、Iterator迭代器、增强for循环 、泛型_讲义

    今日内容介绍 1.集合 2.Iterator迭代器 3.增强for循环 4.泛型 01集合使用的回顾 *A:集合使用的回顾 *a.ArrayList集合存储5个int类型元素 public stati ...

  3. 课堂alpha发布

    项目组名:奋斗吧兄弟 今天七组对于各自项目现有的成果进行了alpha发布,下面是我的一些感想. 天天向上团队的连连看游戏: 令我印象最深的是天天向上团队的连连看项目,他们目前能展示给我们的是核心的连连 ...

  4. vue-Slot分发内容

    ①概述: 简单来说,假如父组件需要在子组件内放一些DOM,那么这些DOM是显示.不显示.在哪个地方显示.如何显示,就是slot分发负责的活. ②默认情况下 父组件在子组件内套的内容,是不显示的. 例如 ...

  5. linux创建账户并自动生成主目录和主目录下的文件

    # useradd -d /home/test -m test; 然后给test设置密码. # passwd test; 1. useradd 添加用户或更新新创建用户的默认信息 语法:useradd ...

  6. mongo学习1 (转)

    关于mongodb的好处,优点之类的这里就不说了,唯一要讲的一点就是mongodb中有三元素:数据库,集合,文档,其中“集合” 就是对应关系数据库中的“表”,“文档”对应“行”. 一: 下载 上Mon ...

  7. js中的php rand函数

    //文件rand.js function MyRand(min, max){ this.min = min; this.max = max; } MyRand.prototype.getRand = ...

  8. [知乎]老狼:UFS VS NVMe

    https://zhuanlan.zhihu.com/p/26652622 最近某手机厂商的闪存门在知乎上被人踢爆,在所谓“爵士水军”和“友商水军”的口水大战中,至少eMMC, UFS等火星名词被广泛 ...

  9. VMware 虚拟机 不能上网 CentOS 6.5 Windows 7上面安装了VMware,然后安装了CentOS系统,安装完了无法上网;

    今天想要学习一下大数据的知识,在windows 7上面 安装了VMware,然后安装了Centos系统,但是发现安装完了,无法上网 我在Centos上面 使用 ping www.baidu.com 始 ...

  10. Dcoker中启动mysql,并实现root远程访问

    mysql容器的运行 下载mysql 5.7.19的镜像 docker pull mysql:5.7.19 运行mysql容器,端口映射为 10036 docker run --name mysql5 ...