2018.06.30 cdq分治
#cdq分治
##一种奇妙的分治方法
- 优点:可以顶替复杂的高级数据结构;常数比较小。
- 缺点:必须离线操作。
CDQ分治的基本思想十分简单。如下:
我们要解决一系列问题,包含修改和查询操作,我们将这些问题排成一个序列,用一个区间[L,R]表示。
- 分。不用多说,递归处理左边区间[L,Mid]和右边区间[Mid+1,R]的问题。
- 治。核心。合并两个子问题,同时考虑到[L,Mid]内的修改对[Mid+1,R]内的查询产生的影响。即,用左边的子问题帮助解决右边的子问题。
$Wow,that’s $ sososo easy!easy!easy!
入门题:二维偏序(求逆序对):对于每个有序对(a,b)(a,b)(a,b),有多少个有序对(a2,b2)(a2,b2)(a2,b2)满足a2<aa2<aa2<a且b2>bb2>bb2>b
常规解法:树状数组,线段树。
经典解法:cdq分治。
我们在拿到所有有序对(a,b)(a,b)(a,b)的时候,先把aaa元素从小到大排序。这时候问题就变成了“求顺序对”,因为aaa元素已经有序,可以忽略aaa元素带来的影响,和“求逆序对”的问题是一样的。然后就可以各种乱搞了。
简单题:三维偏序:
BZOJ3262: 陌上花开
Time Limit: 20 Sec Memory Limit: 256 MB
Description
有n朵花,每朵花有三个属性:花形(s)、颜色©、气味(m),用三个整数表示。
现在要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量。
定义一朵花A比另一朵花B要美丽,当且仅Sa>=Sb,Ca>=Cb,Ma>=Mb。
显然,两朵花可能有同样的属性。需要统计出评出每个等级的花的数量。
Input
第一行为N,K (1 <= N <= 100,000, 1 <= K <= 200,000 ), 分别表示花的数量和最大属性值。
以下N行,每行三个整数si, ci, mi (1 <= si, ci, mi <= K),表示第i朵花的属性
Output
包含N行,分别表示评级为0…N-1的每级花的数量。
Sample Input
10 3
3 3 3
2 3 3
2 3 1
3 1 1
3 1 2
1 3 1
1 1 2
1 2 2
1 3 2
1 2 1
Sample Output
3
1
3
0
1
0
1
0
0
1
常规解法:树套树。
经典解法:cdq分治+树状数组。
如果我们像二维偏序一样排序的话,那么可以保证aaa的有序,只需求b,cb,cb,c的逆序对,这个用树状数组维护即可。
代码如下:
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define maxn 100010
#define maxk 200010
#define ll long long
using namespace std;
inline int read(){
int x=0,f=1;
char ch=getchar();
while(isdigit(ch)==0 && ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline void write(int x){
int f=0;char ch[20];
if(!x){puts("0");return;}
if(x<0){putchar('-');x=-x;}
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
}
typedef struct node{
int x,y,z,ans,w;
}stnd;
stnd a[maxn],b[maxn];
int n,cnt[maxk];
int k,n_;
bool cmpx(stnd u,stnd v){
if(u.x==v.x){
if(u.y==v.y)
return u.z<v.z;
return u.y<v.y;
}
return u.x<v.x;
}
bool cmpy(stnd u,stnd v){
if(u.y==v.y)
return u.z<v.z;
return u.y<v.y;
}
struct treearray{
int tre[maxk],kk;
int lwbt(int x){return x&(-x);}
int ask(int i){int ans=0; for(;i;i-=lwbt(i))ans+=tre[i];return ans;}
void add(int i,int k){for(;i<=kk;i+=lwbt(i))tre[i]+=k;}
}t;
void cdq(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
cdq(l,mid);cdq(mid+1,r);
sort(a+l,a+mid+1,cmpy);
sort(a+mid+1,a+r+1,cmpy);
int i=mid+1,j=l;
for(;i<=r;i++){
while(a[j].y<=a[i].y && j<=mid)
t.add(a[j].z,a[j].w),j++;
a[i].ans+=t.ask(a[i].z);
}
for(i=l;i<j;i++)
t.add(a[i].z,-a[i].w);
}
int main(){
n_=read(),k=read();t.kk=k;
for(int i=1;i<=n_;i++)
b[i].x=read(),b[i].y=read(),b[i].z=read();
sort(b+1,b+n_+1,cmpx);
int c=0;
for(int i=1;i<=n_;i++){
c++;
if(b[i].x!=b[i+1].x || b[i].y!=b[i+1].y || b[i].z!=b[i+1].z )
a[++n]=b[i],a[n].w=c,c=0;
}
cdq(1,n);
for(int i=1;i<=n;i++)cnt[a[i].ans+a[i].w-1]+=a[i].w;
for(int i=0;i<n_;i++)write(cnt[i]);
return 0;
}
不难发现,cdq分治起到了一个降维的作用,这在我们处理复杂的问题时有显著的作用。
2018.06.30 cdq分治的更多相关文章
- 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...
- 2018.06.30 BZOJ4443: [Scoi2015]小凸玩矩阵(二分加二分图匹配)
4443: [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方是好朋友,小方给小凸一个N*M(N< ...
- 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- 2018.06.30 BZOJ1026: [SCOI2009]windy数(数位dp)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻两 ...
- 2018.06.30 BZOJ3083: 遥远的国度(换根树剖)
3083: 遥远的国度 Time Limit: 10 Sec Memory Limit: 512 MB Description 描述 zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国 ...
- 2018.06.30 BZOJ 3932: [CQOI2015]任务查询系统(主席树)
3932: [CQOI2015]任务查询系统 Time Limit: 20 Sec Memory Limit: 512 MB Description 最近实验室正在为其管理的超级计算机编制一套任务管理 ...
- 2018.06.30 BZOJ 2342: [Shoi2011]双倍回文(manacher)
2342: [Shoi2011]双倍回文 Time Limit: 10 Sec Memory Limit: 128 MB Description Input 输入分为两行,第一行为一个整数,表示字符串 ...
- 2018.10.01 bzoj3237: [Ahoi2013]连通图(cdq分治+并查集)
传送门 cdq分治好题. 对于一条边,如果加上它刚好连通的话,那么删掉它会有两个大集合A,B.于是我们先将B中禁用的边连上,把A中禁用的边禁用,再递归处理A:然后把A中禁用的边连上,把B中禁用的边禁用 ...
- 2018.09.30 bzoj4025: 二分图(线段树分治+并查集)
传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的 ...
随机推荐
- eclipse 断点找到同名的其它类
转载自Eclipse断点进入另一个项目的同名Java文件中(http://tunps.com/p/11789.html) eclipse 断点找到同名的其它类 A和B是两个相同的项目,A一直本地,B是 ...
- mongodb基础学习1-基本说明及安装
以前看过一些mongodb的视频,但只看到一半没有看完,也没有同步安装软件动手操作,正好最近没事,打算花点时间从头学习一遍,边学习边动手操作,学习的过程在此进行记录. 好了,下面说一下今天的学习内容. ...
- Win10 pip install gensim 报错处理
# 故障描述 shell > pip install gensim # 报错信息如下: Command "c:\users\op\appdata\local\programs\pyth ...
- 在eclipse中建立子级源码文件夹
在eclipse中建立子级源码文件夹 右键点击项目 ---->new ---->source folder--->输入 src/main --->勾选update exclu ...
- CentOS开机卡在进度条,无法正常开机的排查办法
CentOS开机的时候卡在进度条一直进不去 重启,按f5键进度条/命令行界面方式切换,确认卡问题后处理就好 我这边卡在redis服务,设置为开机启动但是一直服务启动不起来 重启按住"e&qu ...
- hadoop 集群安装配置 【转】
http://www.cnblogs.com/ejiyuan/p/5557061.html 注意:要把master 上所有的配置文件(主要是配置的那四个 xxxx-site.xml 和 xxx-env ...
- spark UDF函数
Spark(Hive) SQL中UDF的使用(Python):http://www.tuicool.com/articles/3yMBNb7
- SVN的基本操作
右键SVN Commit 提交成功了,我们把SVN的服务器端刷新一下 所有的操作如果只是删除本地的文件都不会影响服务器端的文件,除非右键SVN Commit删除文件或者是新增文件才会对服务器端的仓库里 ...
- FileUpload控件实现单按钮图片自动上传并带预览显示
FileUpload控件实现单按钮图片自动上传并带预览显示 1.实现原理: FileUpload控件默认不支持服务端的ONCHANGE事件,此时用一种变通的方法借用客户端的onchange事件,调 ...
- PAT L2-010 排座位(floyd)
布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位.无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席. 输入格式: ...