题意

Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

意思就是说在给定的节点中计算出在同一条直线上的最大节点个数。

思路

这道题,题意很容易理解,但是需要注意的东西包括,如果你用斜率计算,那么就需要注意到精确度的问题,否则就会变成相等的斜率,无奈之下,只能提高精确度,比如说用long double,但这不是持久的办法,目前的办法是使用最大公约数。

其实我大概的思路已经想到了,就是第五种方法的思路,这道题没做出来的原因是,没有考虑到相同点以及相同的x的情况。

代码

#include <stdio.h>
#include <stdio.h>
#include <string>
#include <vector>
#include <iostream>
#include <unordered_map>
#include <map>
#include <set>
using namespace std; /**
* Definition for a point. */
struct Point {
int x;
int y;
Point() : x(0), y(0) {}
Point(int a, int b) : x(a), y(b) {}
}; /**
* 第一种方法:将每一个顶点和其他的顶点进行计算得出斜率,
* 用hash保存下来,key为斜率,value为总个数
* 因为相同斜率的则在同一条线上
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints(vector<Point>& points) {
unordered_map<int, int> hash;
int maxCnt = 0; auto caculateK = [&](Point p1, Point p2) {
int k = (p2.y - p1.y)/(p2.x - p1.x);
return k;
}; for (int i = 0; i < points.size(); i++) {
Point pointA = points[i];
for (int j = 0; j < points.size() && i != j; j++) {
Point pointB = points[j];
int k = caculateK(pointA, pointB);
if (hash.find(k) != hash.end()) {
hash[k]++;
}
else {
hash.insert(make_pair(k, 1));
}
} // hash.clear();
} for (auto itr = hash.begin(); itr != hash.end(); itr++) {
maxCnt = std::max((*itr).second, maxCnt);
} return maxCnt + 2;
} /**
* 计算最大公约数
*/
int GCD(int a, int b) { if(b==0) return a;
else return GCD(b, a%b);
} /**
* 这个方法不再是使用斜率作为map的key,而是使用的是gcd(最大公约数)
* 总之结果就是overlap+localmax+vertical+1,
* 其中overlap代表的是完全相同的顶点,vertical代表的是只有x是相等的,因为相减会导致0
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints2(vector<Point>& points) {
if (points.size() < 2) {
return (int)points.size();
} int result = 0;
for (int i = 0; i < points.size(); i++) {
map<pair<int, int>, int> lines;
int localmax = 0, overlap = 0, vertical = 0; for (int j = i+1; j < points.size(); j++) {
// 相同的点的个数
if (points[j].x == points[i].x && points[j].y == points[i].y) {
overlap++;
continue;
}
else if (points[j].x == points[i].x) {
vertical++;
}
else {
int a=points[j].x-points[i].x, b=points[j].y-points[i].y;
int gcd=GCD(a, b); a/=gcd;
b/=gcd; lines[make_pair(a, b)]++;
localmax=std::max(lines[make_pair(a, b)], localmax);
} localmax=std::max(vertical, localmax);
} // 结果为
result = std::max(result, localmax+overlap+1); //这里加一是因为之前vertical只计算了一次
} return result;
} // 由于精确度问题,更改double
inline bool double_equal(double a, double b) { return abs(a-b) < 1e-10; }
inline bool double_less (double a, double b) { return a-b < -1e-10; } struct Line {
double r; // ratio ; slope
double t; // translation Line(Point p, Point q) { // math
if (q.x == p.x) r = 1e20, t = p.x;
else
{
r = (double) (q.y-p.y) / (double) (q.x-p.x);
t = p.y - p.x * r;
}
}
}; // 用作排序
bool operator < (const Line& a, const Line& b) {
return a.r == b.r ? a.t < b.t : a.r < b.r;
} // 依此来判断map中是否相等
bool operator == (const Line& a, const Line& b) {
return a.r == b.r && a.t == b.t;
} /**
* 这个思路最大的特点就是利用了一个结构体和set的原理
* 因为set可以自动去除掉重复的元素
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints4(vector<Point> &points) {
if (points.empty()) return 0; map<Line, set<Point*> > line_map; for (auto & a : points)
for (auto & b : points)
{
Line line(a,b);
line_map[line].insert(&a);
line_map[line].insert(&b);
} int ret = 1;
for (auto & pr : line_map) ret = max(ret,(int)pr.second.size()); return ret;
} /**
* 最直接最简单的做法
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints5(vector<Point>& points) {
if(points.empty())
return 0;
else if(points.size() == 1)
return 1; int ret = 0;
for(int i = 0; i < points.size(); i ++)
{//start point
int curmax = 1; //points[i] itself
unordered_map<long double, int> kcnt; // slope_k count
int vcnt = 0; // vertical count
int dup = 0; // duplicate added to curmax
for(int j = 0; j < points.size(); j ++)
{
if(j != i)
{
long double deltax = points[i].x - points[j].x;
long double deltay = points[i].y - points[j].y;
if(deltax == 0 && deltay == 0) {
dup ++;
}
else if(deltax == 0)
{
if(vcnt == 0)
vcnt = 2;
else
vcnt ++;
curmax = max(curmax, vcnt);
}
else
{
long double k = deltay / deltax;
if(kcnt[k] == 0)
kcnt[k] = 2;
else
kcnt[k] ++;
curmax = max(curmax, kcnt[k]);
}
}
}
ret = max(ret, curmax + dup);
}
return ret;
} int main(int argc, const char * argv[]) {
vector<Point> points;
Point point1(0, 0), point2(94911151, 94911150), point3(94911152, 94911151), point4(5, 6);
points.push_back(point1);
points.push_back(point2);
points.push_back(point3); int result = maxPoints5(points);
cout << "result..." << result << endl;
return 0;
}

[LeetCode] Max Points on a Line 题解的更多相关文章

  1. LeetCode: Max Points on a Line 解题报告

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  2. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  3. [leetcode]Max Points on a Line @ Python

    原题地址:https://oj.leetcode.com/problems/max-points-on-a-line/ 题意:Given n points on a 2D plane, find th ...

  4. LeetCode:Max Points on a Line

    题目链接 Given n points on a 2D plane, find the maximum number of points that lie on the same straight l ...

  5. 【leetcode】Max Points on a Line

    Max Points on a Line 题目描述: Given n points on a 2D plane, find the maximum number of points that lie ...

  6. [LeetCode OJ] Max Points on a Line

    Max Points on a Line Submission Details 27 / 27 test cases passed. Status: Accepted Runtime: 472 ms ...

  7. 【LeetCode】149. Max Points on a Line

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  8. [LintCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. Max Points on a Line leetcode java

    题目: Given n points on a 2D plane, find the maximum number of points that lie on the same straight li ...

随机推荐

  1. Once you eliminate all the other factors,the only thing remaining must be the truth.

    Once you eliminate all the other factors,the only thing remaining must be the truth. 一旦你排除了杂因,剩下的一定是 ...

  2. Next Permutation & Previous Permutation

    Next Permutation Given a list of integers, which denote a permutation. Find the next permutation in ...

  3. 一步一步搭建 oracle 11gR2 rac+dg之grid安装(四)【转】

    一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之grid安装 (四) 转自 一步一步搭建 oracle 11gR2 rac+d ...

  4. 001_Mac键盘图标与对应快捷按键标志汇总

    Mac键盘图标与对应快捷按键 ⌘——Command () win键 ⌃ ——Control ctrl键 ⌥——Option (alt) ⇧——Shift ⇪——Caps Lock fn——功能键就是 ...

  5. ubuntu下将程序挂后台命令

    ubuntu下将程序挂后台命令 nohup python -u main.py > test.out 2>&1 & ubunut下查看后台进程 jobs -l

  6. java基础33 Set集合下的HashSet集合和TreeSet集合

    单例集合体系: ---------| collection  单例集合的根接口--------------| List  如果实现了list接口的集合类,具备的特点:有序,可重复       注:集合 ...

  7. TCP连接建立与断开

    tcp状态 LISTEN:侦听来自远方的TCP端口的连接请求 LISTEN:侦听来自远方的TCP端口的连接请求 SYN-SENT:再发送连接请求后等待匹配的连接请求 SYN-RECEIVED:再收到和 ...

  8. 20165203迭代和JDB测试

    1.使用C(n,m)=C(n-1,m-1)+C(n-1,m)公式进行递归编程实现求组合数C(m,n)的功能 public class C { public static void main(Strin ...

  9. OA项目CRUD和单元测试(一)

    使用ModeFirst方法生成数据库,EntityFramework5.0. 一:Model层的模型:(根据模型生成数据库) 二:Dal层的UserInfo代码: namespace SunOA.EF ...

  10. N皇后问题的实现

    N皇后问题是一个经典的问题,是回溯算法的典型案例.它是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出的八皇后问题延伸而来的,具体要求如下:在N*N的方格棋盘放置N个皇后,使她们彼此不相互攻击,即任意2 ...