673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
Approach #1: C++. [DFS]
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
if (n == 0) return 0;
c_ = vector<int>(n, 0);
l_ = vector<int>(n, 0);
int max_len = 0;
for (int i = 0; i < n; ++i)
max_len = max(max_len, len(nums, i));
int ans = 0;
for (int i = 0; i < n; ++i)
if (len(nums, i) == max_len)
ans += count(nums, i);
return ans;
}
private:
vector<int> c_;
vector<int> l_;
// find the total number of increasing subsequence from i to n of the index.
int count(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (c_[n] > 0) return c_[n];
int total_count = 0;
int l = len(nums, n);
// find the number of increasing subsequence which is short than current subsquence.
for (int i = 0; i < n; ++i)
if (nums[n] > nums[i] && len(nums, i) == l-1)
total_count += count(nums, i);
if (total_count == 0)
total_count = 1;
return c_[n] = total_count;
}
// find the max length of increasing subsequence from i to n of the index.
int len(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (l_[n] > 0) return l_[n];
int max_len = 1;
for (int i = 0; i < n; ++i)
if (nums[n] > nums[i])
max_len = max(max_len, len(nums, i) + 1);
return l_[n] = max_len;
}
};
Appraoch #2: Interation. [Java]
class Solution {
public int findNumberOfLIS(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
int[] c = new int[n];
int[] l = new int[n];
Arrays.fill(c, 1);
Arrays.fill(l, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j])
if (l[j] + 1 > l[i]) {
l[i] = l[j] + 1;
c[i] = c[j];
} else if (l[j] + 1 == l[i]){
c[i] += c[j];
}
}
}
int max_len = 0;
for (int i = 0; i < n; ++i)
if (l[i] > max_len)
max_len = l[i];
int ans = 0;
for (int i = 0; i < n; ++i) {
if (l[i] == max_len)
ans += c[i];
}
return ans;
}
}
Analysis:
The idea is to use two arrays l[n] ans c[n] to record the maximum length os Incresing Subsequence ans the coresponding number of there sequence which ends with nums[i], respectively. That is:
l[i]: the lenght of the Longest Increasing Subseuqence which ends with nums[i].
c[i]: the number of the Longest Increasing Subsequence which ends with nums[i].
Then, the result is the sum of each c[i] while its corresponding l[i] is the maximum length.
Reference:
673. Number of Longest Increasing Subsequence的更多相关文章
- Week 12 - 673.Number of Longest Increasing Subsequence
Week 12 - 673.Number of Longest Increasing Subsequence Given an unsorted array of integers, find the ...
- 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)
[LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...
- [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- 【LeetCode】673. Number of Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example ...
- LeetCode 673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- [Swift]LeetCode673. 最长递增子序列的个数 | Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- LeetCode Number of Longest Increasing Subsequence
原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...
随机推荐
- Package gtk+-3.0 was not found in the pkg-config search path
问题描述: 在fedora21系统上通过rpmbuild构建fcitx的二进制包时出现以上错误,经老程序员指点:“是相应的开发包没有安装” 解决办法: yum installl gtk3-devel ...
- 2018.09.24 bzoj4977: [[Lydsy1708月赛]跳伞求生(贪心+线段树)
传送门 线段树好题. 这题一看我就想贪心. 先把a,b数组排序. 然后我们选择a数组中最大的b个数(不足b个就选a个数),分别贪心出在b数组中可以获得的最大贡献. 这时可以用线段树优化. 然后交上去只 ...
- hdu-1130(卡特兰数+大数乘法,除法模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1130 卡特兰数:https://blog.csdn.net/qq_33266889/article/d ...
- 命令行生成war包
1.找到自己的代码位置 2.进入cmd界面 3.进入对应的目录 4.执行命令 5.就会开始自动打包 6.在文件夹下生成对应的war包
- MAC安装远程工具Securecrt的破解方式(详细有图)
想要实现mac的远程连接功能,本来想使用终端的,但是终端的很多功能是欠佳的,所以决定安装一款,像windows的xshell一样好的软件,所以选择了这款Securecrt. 首先准备两个东西,一个是S ...
- Leed code 11. Container With Most Water
public int maxArea(int[] height) { int left = 0, right = height.length - 1; int maxArea = 0; while ( ...
- button 左边图片右边文字样式
状态值 : 正常 状态值 : 选中 #pragma mark - buttonPress- (void)buttonPress:(UIButton * )sender { if ( ...
- Java中JNI的使用详解第一篇:HelloWorld
转自: http://blog.csdn.net/jiangwei0910410003/article/details/17465085 今天开始研究JNI技术,首先还是老套路,输出一个HelloWo ...
- win7系统窗口背景颜色设置为护眼色的方法---打开的任意窗口显示为护眼色,程序眼必备
win7系统窗口背景颜色设置为护眼色的方法 1. 打开"窗口颜色与外观"对话框 方法1:从控制面板开始 控制面板\外观和个性化\个性化\窗口颜色和外观 方法2:桌面上鼠标右键,个性 ...
- hdu 5033 模拟+单调优化
http://acm.hdu.edu.cn/showproblem.php?pid=5033 平面上有n个建筑,每个建筑由(xi,hi)表示,m组询问在某一个点能看到天空的视角范围大小. 维护一个凸包 ...