Given an unsorted array of integers, find the number of longest increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].

Example 2:

Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.

Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.

Approach #1: C++. [DFS]

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
if (n == 0) return 0; c_ = vector<int>(n, 0);
l_ = vector<int>(n, 0); int max_len = 0;
for (int i = 0; i < n; ++i)
max_len = max(max_len, len(nums, i)); int ans = 0;
for (int i = 0; i < n; ++i)
if (len(nums, i) == max_len)
ans += count(nums, i); return ans;
} private:
vector<int> c_;
vector<int> l_; // find the total number of increasing subsequence from i to n of the index.
int count(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (c_[n] > 0) return c_[n]; int total_count = 0;
int l = len(nums, n); // find the number of increasing subsequence which is short than current subsquence.
for (int i = 0; i < n; ++i)
if (nums[n] > nums[i] && len(nums, i) == l-1)
total_count += count(nums, i); if (total_count == 0)
total_count = 1; return c_[n] = total_count;
} // find the max length of increasing subsequence from i to n of the index.
int len(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (l_[n] > 0) return l_[n]; int max_len = 1; for (int i = 0; i < n; ++i)
if (nums[n] > nums[i])
max_len = max(max_len, len(nums, i) + 1); return l_[n] = max_len;
} };

  

Appraoch #2: Interation. [Java]

class Solution {
public int findNumberOfLIS(int[] nums) {
int n = nums.length;
if (n == 0) return 0; int[] c = new int[n];
int[] l = new int[n]; Arrays.fill(c, 1);
Arrays.fill(l, 1); for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j])
if (l[j] + 1 > l[i]) {
l[i] = l[j] + 1;
c[i] = c[j];
} else if (l[j] + 1 == l[i]){
c[i] += c[j];
}
}
} int max_len = 0;
for (int i = 0; i < n; ++i)
if (l[i] > max_len)
max_len = l[i]; int ans = 0;
for (int i = 0; i < n; ++i) {
if (l[i] == max_len)
ans += c[i];
} return ans;
}
}

  

Analysis:

The idea is to use two arrays l[n] ans c[n] to record the maximum length os Incresing Subsequence ans the coresponding number of there sequence which ends with nums[i], respectively. That is:

l[i]: the lenght of the Longest Increasing Subseuqence which ends with nums[i].

c[i]: the number of the Longest Increasing Subsequence which ends with nums[i].

Then, the result is the sum of each c[i] while its corresponding l[i] is the maximum length.

Reference:

https://leetcode.com/problems/number-of-longest-increasing-subsequence/discuss/107293/JavaC%2B%2B-Simple-dp-solution-with-explanation

http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-673-number-of-longest-increasing-subsequence/

673. Number of Longest Increasing Subsequence的更多相关文章

  1. Week 12 - 673.Number of Longest Increasing Subsequence

    Week 12 - 673.Number of Longest Increasing Subsequence Given an unsorted array of integers, find the ...

  2. 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)

    [LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...

  3. [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  4. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  5. 【LeetCode】673. Number of Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example ...

  6. LeetCode 673. Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  7. [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  8. [Swift]LeetCode673. 最长递增子序列的个数 | Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  9. LeetCode Number of Longest Increasing Subsequence

    原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...

随机推荐

  1. 设置 svn 与 web线上同步

    默认你已经配置好了svn服务 1.假设我们的线上网站目录为:/data/www/xxx 2.假设svn的仓库目录为:/data/svn/repo 一.checkout一份svn到线上网站目录 svn ...

  2. 关于apicloud图片缓存

    imageCache如果是同一个地址,得到的缓存文件名字是一样的.可能是对url md5了一下. apicloud目前有两种清除方式1 一种是api.clearCache   另一种方法当然是强大的 ...

  3. servlet填充Response时,数据转换之content-type

    在Http请求中,我们每天都在使用Content-type来指定不同格式的请求信息,但是却很少有人去全面了解content-type中允许的值有多少,这里将讲解Content-Type的可用值. 1. ...

  4. 2018.09.23 codeforces 1053A. In Search of an Easy Problem(gcd)

    传送门 今天的签到题. 有一个很显然的结论,gcd(n∗m,k)≤2gcd(n*m,k)\le 2gcd(n∗m,k)≤2. 本蒟蒻是用的行列式求三角形面积证明的. 如果满足这个条件,就可以直接构造出 ...

  5. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  6. 19. Fight over Fox-hunting 猎狐引发的冲突

    . Fight over Fox-hunting 猎狐引发的冲突 ① Foxes and farmers have never got on well.These small dog-like ani ...

  7. Linux各个版本资源下载

    Linux系统各发行版镜像下载(持续更新) == Linux系统各发行版镜像下载(2014年10月更新),如果直接下载不了,请使用迅雷下载.并且注意,我的下载地址,在  迅雷 里才起作用. Linux ...

  8. Tensorflow从源代码编译2

    https://blog.csdn.net/qq_37674858/article/details/81095101 https://blog.csdn.net/yhily2008/article/d ...

  9. ggdl

    \documentclass{article} \usepackage{geometry} \geometry{hmargin=1cm,vmargin=1cm} \usepackage{tikz} % ...

  10. AME

    http://wenku.baidu.com/view/a9dbebc789eb172ded63b7f4.htmlhttp://wenku.baidu.com/view/dde6eb040740be1 ...