【uoj#209】[UER #6]票数统计 组合数+乱搞
一个长度为 $n$ 的序列,每个位置为 $0$ 或 $1$ 两种。现在给出 $m$ 个限制条件,第 $i$ 个限制条件给出 $x_i$ 、$y_i$ ,要求至少满足以下两个条件之一:
- 序列的前 $x_i$ 个位置中,恰好有 $y_i$ 个 $1$ ;
- 序列的后 $y_i$ 个位置中,恰好有 $x_i$ 个 $1$ ;
求有多少个序列满足所有限制条件。答案可能很大,只需要输出它对 $998244353$ 取模后的结果即可。
题解
组合数+乱搞
显然当 $x>y$ 时条件为前缀限制,$x<y$ 时条件为后缀限制。
既有前缀限制,又有后缀限制的情况下,我们枚举总共1的个数,把后缀限制转化为前缀限制。
如果所有限制均有 $x\ne y$ 则可以直接使用组合数计算。预处理组合数,单次计算的时间复杂度是 $O(n)$ 的。
当有 $x=y$ 时,显然只需要考虑所有 $x=y$ 限制中 $x$ 最大的限制即可,总方案数为 满足前缀+满足后缀-满足前缀和后缀。
时间复杂度 $O(n^2)$ 。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
#define M 5010
#define mod 998244353
using namespace std;
int n , ax[N] , ay[N] , at , bx[N] , by[N] , bt , c[M][M] , v[M];
int solve(int x)
{
int i , last = 0 , ans = 1;
memset(v , -1 , sizeof(v));
v[0] = 0 , v[n] = x;
for(i = 1 ; i <= at ; i ++ )
{
if(v[ax[i]] != -1 && v[ax[i]] != ay[i]) return 0;
v[ax[i]] = ay[i];
}
for(i = 1 ; i <= bt ; i ++ )
{
if(v[n - bx[i]] != -1 && v[n - bx[i]] != x - by[i]) return 0;
v[n - bx[i]] = x - by[i];
}
for(i = 1 ; i <= n ; i ++ )
{
if(v[i] != -1)
{
if(v[i] < v[last]) return 0;
ans = 1ll * ans * c[i - last][v[i] - v[last]] % mod , last = i;
}
}
return ans;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
at = bt = 0;
int m , i , j , x , y , p = 0 , mx = 0 , ans = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d" , &x , &y) , mx = max(mx , min(x , y));
if(x > y) ax[++at] = x , ay[at] = y;
else if(x < y) bx[++bt] = y , by[bt] = x;
else p = max(p , x);
}
c[0][0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
for(i = mx ; i <= n ; i ++ )
{
at ++ , ax[at] = ay[at] = p , ans = (ans + solve(i)) % mod;
bt ++ , bx[bt] = by[bt] = p , ans = (ans - solve(i) + mod) % mod;
at -- , ans = (ans + solve(i)) % mod , bt -- ;
}
printf("%d\n" , ans);
}
return 0;
}
【uoj#209】[UER #6]票数统计 组合数+乱搞的更多相关文章
- 种树 & 乱搞
题意: 在一个(n+1)*(m+1)的网格点上种k棵树,树必须成一条直线,相邻两棵树距离不少于D,求方案数. SOL: 这题吧...巨坑无比,本来我的思路是枚举每一个从(0,0)到(i,j)的矩形,然 ...
- 【uoj#142】【UER #5】万圣节的南瓜灯 乱搞+并查集
题目描述 给出一张 $n\times m$ 的网格图,两个格子之间有一条双向边,当且仅当它们相邻,即在网格图中有一条公共边. 特殊地,对于 $1\le x\le n$ ,$(x,1)$ 和 $(x ...
- [CSP-S模拟测试]:统计(树状数组+乱搞)
题目传送门(内部题120) 输入格式 第一行,两个正整数$n,m$. 第二行,$n$个正整数$a_1,a_2,...,a_n$,保证$1\leqslant a_i\leqslant n$,可能存在相同 ...
- 【BZOJ-3578】GTY的人类基因组计划2 set + map + Hash 乱搞
3578: GTY的人类基因组计划2 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 367 Solved: 159[Submit][Status][ ...
- BZOJ-1491 社交网络 FLoyd+乱搞
感觉这两天一直在做乱搞的题... 1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1279 Solved: 732 ...
- “盛大游戏杯”第15届上海大学程序设计联赛夏季赛暨上海高校金马五校赛题解&&源码【A,水,B,水,C,水,D,快速幂,E,优先队列,F,暴力,G,贪心+排序,H,STL乱搞,I,尼姆博弈,J,差分dp,K,二分+排序,L,矩阵快速幂,M,线段树区间更新+Lazy思想,N,超级快速幂+扩展欧里几德,O,BFS】
黑白图像直方图 发布时间: 2017年7月9日 18:30 最后更新: 2017年7月10日 21:08 时间限制: 1000ms 内存限制: 128M 描述 在一个矩形的灰度图像上,每个 ...
- BZOJ4401:块的计数(乱搞)
Description 小Y最近从同学那里听说了一个十分牛B的高级数据结构——块状树.听说这种数据结构能在sqrt(N)的时间内维护树上的各种信息,十分的高效.当然,无聊的小Y对这种事情毫无兴趣,只是 ...
- BZOJ4236:JOIOJI(乱搞)
Description JOIOJI桑是JOI君的叔叔.“JOIOJI”这个名字是由“J.O.I”三个字母各两个构成的. 最近,JOIOJI桑有了一个孩子.JOIOJI桑想让自己孩子的名字和自己一样由 ...
- 洛谷P5211 [ZJOI2017]字符串(线段树+乱搞)
题面 传送门 题解 为什么大佬们全都是乱搞的--莫非这就是传说中的暴力能进队,乱搞能AC-- 似乎有位大佬能有纯暴力+玄学优化\(AC\)(不算上\(uoj\)的\(Hack\)数据的话--这要是放到 ...
随机推荐
- Session里存的密码或其他信息如何获取。
1.首先找到登陆界面,看给session里存的是什么,是以什么格式去存的(个人这边是commonAction): 2.其次在需要的界面进行获取,拿出想要的密码或其余值.(密码可能是加密过的,如想做密码 ...
- matplotlib简单示例
一.简介 以下引用自百度百科 Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形 . 通过 Matplotlib,开发者可以仅需要 ...
- angularjs中audio/video 路径赋值问题
之前解决这个问题都是通过js的attr赋值解决的,但是也一直不明白为什么audio直接在HTML中赋值报错.解决方法就是通过添加$sce过滤效果 app.filter("trustUrl&q ...
- Table 组件构建过程中遇到的问题与解决思路
在 GearCase 开源项目构建 Table 组件的过程中.遇到了各式各样的问题,最后尝试了各种方法去解决这些问题. 遇到的部分问题 checkbox 的全选和半选问题 table 组件的排序请求方 ...
- 绝对干货!初学者也能看懂的DPDK解析
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由Willko发表于云+社区专栏 一.网络IO的处境和趋势 从我们用户的使用就可以感受到网速一直在提升,而网络技术的发展也从1GE/10 ...
- Xiuno BBS 4.0 修改时间显示
修罗开源轻论坛程序 - Xiuno BBS 4.0Xiuno BBS 4.0 是一款轻论坛产品,前端基于 BootStrap 4.0.JQuery 3,后端基于 PHP/7 MySQL XCache/ ...
- cal命令详解
基础命令学习目录首页 原文链接:https://www.yiibai.com/linux/cal.html cal命令可以用来显示公历(阳历)日历.公历是现在国际通用的历法,又称格列历,通称阳历.“阳 ...
- linux命令系列 grep
grep, egrep, fgrep - print lines matching a pattern SYNOPSIS grep [OPTIONS] PATTERN [FILE...] grep [ ...
- kerkee demo编译连接过程中遇到的问题及解决方法(iOS)
https://github.com/kercer/kerkee_ios 1.刚打开这个demo的时候是下图这个样子的,我们很自然的可以想到将kerkee.xcoderproj添加到项目里面 2.将k ...
- Final发布 -----欢迎来怼团队
欢迎来怼项目小组—Final发布展示 一.小组成员 队长:田继平 成员:葛美义,王伟东,姜珊,邵朔,阚博文 ,李圆圆 二.文案+美工展示 链接:http://www.cnblogs.com/js201 ...